Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\{k2\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
$y'=12\cos4x-2\sin4x$ | |
$y'=12\cos4x+2\sin4x$ | |
$y'=-12\cos4x+2\sin4x$ | |
$y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số $y=\sqrt{\cos2x}$.
$y'=\dfrac{\sin2x}{2\sqrt{\cos2x}}$ | |
$y'=\dfrac{-\sin2x}{\sqrt{\cos2x}}$ | |
$y'=\dfrac{\sin2x}{\sqrt{\cos2x}}$ | |
$y'=\dfrac{-\sin2x}{2\sqrt{\cos2x}}$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
$y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
$f'\left(x\right)=2\sin4x-3\sin3x$ | |
$f'\left(x\right)=2\sin4x+3\sin3x$ | |
$f'\left(x\right)=\sin4x+3\sin3x$ | |
$f'\left(x\right)=2\sin2x+3\sin3x$ |
Tìm đạo hàm $y'$ của hàm số $y=\sin x+\cos x$.
$y'=2\cos x$ | |
$y'=2\sin x$ | |
$y'=\sin x-\cos x$ | |
$y'=\cos x-\sin x$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
$y'=6\cos3x-2\sin2x$ | |
$y'=2\cos3x+\sin2x$ | |
$y'=-6\cos3x+2\sin2x$ | |
$y'=2\cos3x-\sin2x$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
$-2$ | |
$\dfrac{1}{2}$ | |
$0$ | |
$-\dfrac{1}{2}$ |
Đạo hàm của hàm số $y=\dfrac{\sin^2x-\cos^2x}{\sin x\cdot\cos x}$ tại điểm $x=\dfrac{\pi}{6}$ bằng
$-\dfrac{8}{3}$ | |
$\dfrac{8}{3}$ | |
$\dfrac{16}{3}$ | |
$-\dfrac{16}{3}$ |
Cho \(M\), \(N\) là các số thực, xét hàm số \(f(x)=M\sin\pi x+N\cos\pi x\) thỏa mãn \(f(1)=3\) và \(\displaystyle\int\limits_0^{\tfrac{1}{2}}f(x)\mathrm{\,d}x=-\dfrac{1}{\pi}\). Giá trị của \(f'\left(\dfrac{1}{4}\right)\) bằng
\(\dfrac{5\pi\sqrt{2}}{2}\) | |
\(-\dfrac{5\pi\sqrt{2}}{2}\) | |
\(-\dfrac{\pi\sqrt{2}}{2}\) | |
\(\dfrac{\pi\sqrt{2}}{2}\) |
Hàm số \(F(x)=2\sin x-3\cos x\) là một nguyên hàm của hàm số nào sau đây?
\(f(x)=-2\cos x-3\sin x\) | |
\(f(x)=-2\cos x+3\sin x\) | |
\(f(x)=2\cos x+3\sin x\) | |
\(f(x)=2\cos x-3\sin x\) |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
$(2;+\infty)$ | |
$\mathbb{R}\setminus\{2\}$ | |
$\mathbb{R}$ | |
$[2;+\infty)$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?
$f(x)=\dfrac{1}{2}x^2-\cos x$ | |
$f(x)=1-\sin x$ | |
$f(x)=1+\sin x$ | |
$f(x)=\dfrac{1}{2}x^2+\sin x$ |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
$y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Hàm số $y=\cos x$ có đạo hàm là
$y'=\sin x$ | |
$y'=\dfrac{1}{\sin x}$ | |
$y'=-\cos x$ | |
$y'=-\sin x$ |
Một vật dao động điều hòa có phương trình quảng đường phụ thuộc thời gian $s=A\sin\left(\omega t+\varphi\right)$. Trong đó $A$, $\omega$, $\varphi$ là hằng số, $t$ là thời gian. Khi đó biểu thức vận tốc của vật là
$v=A\cos\left(\omega t+\varphi\right)$ | |
$v=-A\omega\cos\left(\omega t+\varphi\right)$ | |
$v=A\omega\cos\left(\omega t+\varphi\right)$ | |
$v=-A\cos\left(\omega t+\varphi\right)$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
$f\left(x\right)=3x+5\sin x+2$ | |
$f\left(x\right)=3x-5\sin x-5$ | |
$f\left(x\right)=3x-5\sin x+5$ | |
$f\left(x\right)=3x+5\sin x+5$ |