Cho hàm số $y=\begin{cases}x^2+ax+b&\text{khi }x\ge2\\ x^3-x^2-8x+10&\text{khi }x<2\end{cases}$. Biết hàm số có đạo hàm tại điểm $x=2$. Giá trị của $a^2+b^2$ bằng
![]() | $20$ |
![]() | $17$ |
![]() | $18$ |
![]() | $25$ |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{x^2}{2} &\text{khi }x\leq1\\
ax+b &\text{khi }x>1
\end{cases}$$Tìm tất cả các giá trị của \(a,\,b\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=1\).
![]() | \(a=1,\;b=-\dfrac{1}{2}\) |
![]() | \(a=\dfrac{1}{2},\;b=\dfrac{1}{2}\) |
![]() | \(a=\dfrac{1}{2},\;b=-\dfrac{1}{2}\) |
![]() | \(a=1,\;b=\dfrac{1}{2}\) |
Cho hàm số $$f(x)=\begin{cases}
mx^2+2x+2 &\text{khi }x>0\\
nx+1 &\text{khi }x\leq0
\end{cases}$$Tìm tất cả các giá trị của \(m\) và \(n\) sao cho \(f(x)\) có đạo hàm tại điểm \(x=0\).
![]() | Không tồn tại |
![]() | \(m=2,\;n\in\mathbb{R}\) |
![]() | \(n=2,\;m\in\mathbb{R}\) |
![]() | \(m=n=2\) |
Cho hàm số $$f(x)=\begin{cases}
x^2-1 &\text{khi }x\geq0\\
-x^2 &\text{khi }x<0
\end{cases}$$Khẳng định nào sau đây sai?
![]() | Hàm số không liên tục tại \(x=0\) |
![]() | Hàm số có đạo hàm tại \(x=2\) |
![]() | Hàm số liên tục tại \(x=2\) |
![]() | Hàm số có đạo hàm tại \(x=0\) |
Cho hàm số $f\left(x\right)=\begin{cases}\left(x-1\right)^2&\text{khi }x\ge0 \\ -x^2&\text{khi }x<0\end{cases}$ có đạo hàm tại điểm $x_0=0$ bằng
![]() | $f'\left(0\right)=0$ |
![]() | $f'\left(0\right)=1$ |
![]() | $f'\left(0\right)=-2$ |
![]() | Không tồn tại |
Cho hàm số $f\left(x\right)= \begin{cases}\dfrac{3-\sqrt{4-x}}{4}&\text{khi }x\ne0\\ \dfrac{1}{4}&\text{khi }x=0\end{cases}$. Khi đó $f'\left(0\right)$ là kết quả nào sau đây?
![]() | $\dfrac{1}{4}$ |
![]() | $\dfrac{1}{16}$ |
![]() | $\dfrac{1}{32}$ |
![]() | Không tồn tại |
Đạo hàm của hàm số \(y=\dfrac{-x^2+3x-3}{2(x-1)}\) là biểu thức có dạng \(\dfrac{ax^2+bx}{2(x-1)^2}\). Khi đó, tích \(a\cdot b\) bằng
![]() | \(-1\) |
![]() | \(6\) |
![]() | \(4\) |
![]() | \(-2\) |
Đồ thị hàm số \(y=x^3-2mx^2+m^2x+n\) có tọa độ điểm cực tiểu là \((1;3)\). Khi đó \(m+n\) bằng
![]() | \(4\) |
![]() | \(3\) |
![]() | \(2\) |
![]() | \(1\) |
Biết rằng \(\lim\limits_{x\to-\sqrt{3}}\dfrac{2x^3+6\sqrt{3}}{3-x^2}=\dfrac{a\sqrt{3}}{b}\) (\(a,\,b\in\mathbb{Z}\)). Tính \(a^2+b^2\).
![]() | \(10\) |
![]() | \(25\) |
![]() | \(5\) |
![]() | \(13\) |
Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\setminus\{2\}\) bởi $$f(x)=\begin{cases}
\dfrac{x^3-4x^2+3x}{x^2-3x+2} &\text{khi }x\neq1\\
0 &\text{khi }x=1
\end{cases}$$Tính \(f'(1)\).
![]() | \(f'(1)=\dfrac{3}{2}\) |
![]() | \(f'(1)=1\) |
![]() | \(f'(1)=0\) |
![]() | Không tồn tại |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{\sqrt{x^2+1}-1}{x} &\text{khi }x\neq0\\
0 &\text{khi }x=0
\end{cases}$$Tính \(f'(0)\).
![]() | \(f'(0)=0\) |
![]() | \(f'(0)=1\) |
![]() | \(f'(0)=\dfrac{1}{2}\) |
![]() | Không tồn tại |
Cho hàm số $$f(x)=\begin{cases}
\dfrac{3-\sqrt{4-x}}{4} &\text{khi }x\neq0\\
\dfrac{1}{4} &\text{khi }x=0
\end{cases}$$Tính \(f'(0)\).
![]() | \(f'(0)=\dfrac{1}{4}\) |
![]() | \(f'(0)=\dfrac{1}{16}\) |
![]() | \(f'(0)=\dfrac{1}{32}\) |
![]() | Không tồn tại |
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
![]() | \(0\) |
![]() | \(3\) |
![]() | \(1\) |
![]() | \(2\) |
Cho \(M\), \(N\) là các số thực, xét hàm số \(f(x)=M\sin\pi x+N\cos\pi x\) thỏa mãn \(f(1)=3\) và \(\displaystyle\int\limits_0^{\tfrac{1}{2}}f(x)\mathrm{\,d}x=-\dfrac{1}{\pi}\). Giá trị của \(f'\left(\dfrac{1}{4}\right)\) bằng
![]() | \(\dfrac{5\pi\sqrt{2}}{2}\) |
![]() | \(-\dfrac{5\pi\sqrt{2}}{2}\) |
![]() | \(-\dfrac{\pi\sqrt{2}}{2}\) |
![]() | \(\dfrac{\pi\sqrt{2}}{2}\) |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
![]() | $12$ |
![]() | $11$ |
![]() | $6$ |
![]() | $5$ |
Cho $\lim\limits_{x\to-\infty}\left(\sqrt{ax^2-2x}+bx\right)=11$. Tính $Q=b-a$.
![]() | $Q=\dfrac{17}{121}$ |
![]() | $Q=\dfrac{5}{121}$ |
![]() | $Q=-\dfrac{13}{121}$ |
![]() | $Q=\dfrac{10}{121}$ |
Cho hàm số $f(x)=\begin{cases}4x-7\text{ khi }x\ne3\\ 2m+1\text{ khi }x=3\end{cases}$. Xác định $m$ để hàm số $f(x)$ liên tục tại $x=3$.
![]() | $m=3$ |
![]() | $m=-3$ |
![]() | $m=2$ |
![]() | $m=-2$ |
Cho hàm số $f(x)=\begin{cases}\dfrac{4x^2+3x-1}{x+1} &\text { khi }x\neq-1\\ 2m+1 &\text { khi }x=-1\end{cases}$. Với giá trị nào của $m$ thì hàm số đã cho liên tục tại điểm $x=-1$?
![]() | $m=2$ |
![]() | $m=-3$ |
![]() | $m=\dfrac{1}{2}$ |
![]() | $m=0$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
![]() | $m\geq2$ |
![]() | $m\leq2$ |
![]() | $m=2$ |
![]() | $m>2$ |