Cho hàm số $y=\sin2x$. Khẳng định nào sau đây là đúng?
$y^2-\left(y'\right)^2=4$ | |
$4y+y''=0$ | |
$4y-y''=0$ | |
$y=y'.\tan2x$ |
Cho hàm số $y=\sin^2x$. Khẳng định nào sau đây đúng?
$2y'+y''=\sqrt{2}\cos\left(2x-\dfrac{\pi}{4}\right)$ | |
$2y+y'.\tan x=0$ | |
$4y-y''=2$ | |
$4y'+y'''=0$ |
Cho hàm số $y=\sin^2x$. Tính $y^{\left(2018\right)}\left(\pi\right)$.
$y^{\left(2018\right)}\left(\pi\right)=2^{2017}$ | |
$y^{\left(2018\right)}\left(\pi\right)=2^{2018}$ | |
$y^{\left(2018\right)}\left(\pi\right)=-2^{2017}$ | |
$y^{\left(2018\right)}\left(\pi\right)=-2^{2018}$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
$y'=12\cos4x-2\sin4x$ | |
$y'=12\cos4x+2\sin4x$ | |
$y'=-12\cos4x+2\sin4x$ | |
$y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Đạo hàm của hàm số $y=\sin^23x$ là
$y=-3\sin6x$ | |
$y=6\sin^23x.\cos3x$ | |
$y=3\sin6x$ | |
$y=6\sin6x$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
$f'\left(x\right)=2\sin4x-3\sin3x$ | |
$f'\left(x\right)=2\sin4x+3\sin3x$ | |
$f'\left(x\right)=\sin4x+3\sin3x$ | |
$f'\left(x\right)=2\sin2x+3\sin3x$ |
Cho hàm số $f\left(x\right)=\sin2x$. Tìm $f'\left(x\right)$.
$f'\left(x\right)=2\sin2x$ | |
$f'\left(x\right)=\cos2x$ | |
$f'\left(x\right)=2\cos2x$ | |
$f'\left(x\right)=-\dfrac{1}{2}\cos2x$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
$y'=-\dfrac{\cos2x}{\sin^22x}$ | |
$y'=\dfrac{2\cos2x}{\sin^22x}$ | |
$y'=-\dfrac{2\cos x}{\sin^22x}$ | |
$y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
$y'=6\cos3x-2\sin2x$ | |
$y'=2\cos3x+\sin2x$ | |
$y'=-6\cos3x+2\sin2x$ | |
$y'=2\cos3x-\sin2x$ |
Đạo hàm của hàm số $y=\sin\left(\dfrac{\pi}{2}-2x\right)$ bằng biểu thức nào sau đây?
$-\cos\left(\dfrac{\pi}{2}-2x\right)$ | |
$-2\cos\left(\dfrac{\pi}{2}-2x\right)$ | |
$2\cos\left(\dfrac{\pi}{2}-2x\right)$ | |
$\cos\left(\dfrac{\pi}{2}-2x\right)$ |
Hàm số \(f(x)=\log_3(\sin x)\) có đạo hàm là
\(f'(x)=\dfrac{\tan x}{\ln3}\) | |
\(f'(x)=\cot x\cdot\ln3\) | |
\(f'(x)=\dfrac{1}{\sin x\cdot\ln3}\) | |
\(f'(x)=\dfrac{\cot x}{\ln3}\) |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
$y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Tính đạo hàm của hàm số $y=\cot3x$.
$y'=-\dfrac{3}{\sin^2x}$ | |
$y'=\dfrac{3}{\sin^23x}$ | |
$y'=-\dfrac{3}{\sin^33x}$ | |
$y'=-\dfrac{3}{\sin^23x}$ |
Một vật dao động điều hòa có phương trình quảng đường phụ thuộc thời gian $s=A\sin\left(\omega t+\varphi\right)$. Trong đó $A$, $\omega$, $\varphi$ là hằng số, $t$ là thời gian. Khi đó biểu thức vận tốc của vật là
$v=A\cos\left(\omega t+\varphi\right)$ | |
$v=-A\omega\cos\left(\omega t+\varphi\right)$ | |
$v=A\omega\cos\left(\omega t+\varphi\right)$ | |
$v=-A\cos\left(\omega t+\varphi\right)$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Đạo hàm của hàm số $y=x\sin x$ là
$\sin x+x\cos x$ | |
$\sin x-x\cos x$ | |
$\sin x+\cos x$ | |
$\cos x+x\sin x$ |
Đạo hàm của hàm số $y=\tan\left(2x+1\right)$ là
$\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
$-\dfrac{2}{\cos^2\left(2x+1\right)}$ | |
$\dfrac{1}{\cos^2\left(2x+1\right)}$ | |
$\dfrac{2}{\sin^2\left(2x+1\right)}$ |
Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?
$y=\dfrac{1}{3}x^3+\cos x$ | |
$y=2x+\cos x$ | |
$y=\dfrac{1}{3}x^3-\cos x$ | |
$y=2x-\cos x$ |