Đạo hàm của hàm số $y=\sin2x$ là
![]() | $2\cos2x$ |
![]() | $-2\cos2x$ |
![]() | $\cos2x$ |
![]() | $-\cos2x$ |
Cho hàm số $y=\sin2x$. Khẳng định nào sau đây là đúng?
![]() | $y^2-\left(y'\right)^2=4$ |
![]() | $4y+y''=0$ |
![]() | $4y-y''=0$ |
![]() | $y=y'.\tan2x$ |
Cho hàm số $y=\sin^2x$. Khẳng định nào sau đây đúng?
![]() | $2y'+y''=\sqrt{2}\cos\left(2x-\dfrac{\pi}{4}\right)$ |
![]() | $2y+y'.\tan x=0$ |
![]() | $4y-y''=2$ |
![]() | $4y'+y'''=0$ |
Cho hàm số $y=\sin^2x$. Tính $y^{\left(2018\right)}\left(\pi\right)$.
![]() | $y^{\left(2018\right)}\left(\pi\right)=2^{2017}$ |
![]() | $y^{\left(2018\right)}\left(\pi\right)=2^{2018}$ |
![]() | $y^{\left(2018\right)}\left(\pi\right)=-2^{2017}$ |
![]() | $y^{\left(2018\right)}\left(\pi\right)=-2^{2018}$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
![]() | $y'=12\cos4x-2\sin4x$ |
![]() | $y'=12\cos4x+2\sin4x$ |
![]() | $y'=-12\cos4x+2\sin4x$ |
![]() | $y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Đạo hàm của hàm số $y=\sin^23x$ là
![]() | $y=-3\sin6x$ |
![]() | $y=6\sin^23x.\cos3x$ |
![]() | $y=3\sin6x$ |
![]() | $y=6\sin6x$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
![]() | $f'\left(x\right)=2\sin4x-3\sin3x$ |
![]() | $f'\left(x\right)=2\sin4x+3\sin3x$ |
![]() | $f'\left(x\right)=\sin4x+3\sin3x$ |
![]() | $f'\left(x\right)=2\sin2x+3\sin3x$ |
Đạo hàm của hàm số $y=\sin^22x$ trên $\mathbb{R}$ là
![]() | $y'=-2\sin4x$ |
![]() | $y'=2\sin4x$ |
![]() | $y'=-2\cos4x$ |
![]() | $y'=2\cos4x$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
![]() | $y'=-\dfrac{\cos2x}{\sin^22x}$ |
![]() | $y'=\dfrac{2\cos2x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
![]() | $y'=6\cos3x-2\sin2x$ |
![]() | $y'=2\cos3x+\sin2x$ |
![]() | $y'=-6\cos3x+2\sin2x$ |
![]() | $y'=2\cos3x-\sin2x$ |
Đạo hàm của hàm số $y=\sin\left(\dfrac{\pi}{2}-2x\right)$ bằng biểu thức nào sau đây?
![]() | $-\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $-2\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $2\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $\cos\left(\dfrac{\pi}{2}-2x\right)$ |
Hàm số \(f(x)=\log_3(\sin x)\) có đạo hàm là
![]() | \(f'(x)=\dfrac{\tan x}{\ln3}\) |
![]() | \(f'(x)=\cot x\cdot\ln3\) |
![]() | \(f'(x)=\dfrac{1}{\sin x\cdot\ln3}\) |
![]() | \(f'(x)=\dfrac{\cot x}{\ln3}\) |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
![]() | $y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ |
![]() | $y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ |
![]() | $y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ |
![]() | $y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Tính đạo hàm của hàm số $y=\cot3x$.
![]() | $y'=-\dfrac{3}{\sin^2x}$ |
![]() | $y'=\dfrac{3}{\sin^23x}$ |
![]() | $y'=-\dfrac{3}{\sin^33x}$ |
![]() | $y'=-\dfrac{3}{\sin^23x}$ |
Một vật dao động điều hòa có phương trình quảng đường phụ thuộc thời gian $s=A\sin\left(\omega t+\varphi\right)$. Trong đó $A$, $\omega$, $\varphi$ là hằng số, $t$ là thời gian. Khi đó biểu thức vận tốc của vật là
![]() | $v=A\cos\left(\omega t+\varphi\right)$ |
![]() | $v=-A\omega\cos\left(\omega t+\varphi\right)$ |
![]() | $v=A\omega\cos\left(\omega t+\varphi\right)$ |
![]() | $v=-A\cos\left(\omega t+\varphi\right)$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
![]() | $\dfrac{x^2}{2}+\cos2x+C$ |
![]() | $\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ |
![]() | $x^2+\dfrac{1}{2}\cos2x+C$ |
![]() | $\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Đạo hàm của hàm số $y=x\sin x$ là
![]() | $\sin x+x\cos x$ |
![]() | $\sin x-x\cos x$ |
![]() | $\sin x+\cos x$ |
![]() | $\cos x+x\sin x$ |
Đạo hàm của hàm số $y=\tan\left(2x+1\right)$ là
![]() | $\dfrac{2}{\cos^2\left(2x+1\right)}$ |
![]() | $-\dfrac{2}{\cos^2\left(2x+1\right)}$ |
![]() | $\dfrac{1}{\cos^2\left(2x+1\right)}$ |
![]() | $\dfrac{2}{\sin^2\left(2x+1\right)}$ |
Đạo hàm của hàm số $y=x+\sin x$ là
![]() | $1+\cos x$ |
![]() | $1-\cos x$ |
![]() | $\cos x$ |
![]() | $-\cos x$ |
Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?
![]() | $y=\dfrac{1}{3}x^3+\cos x$ |
![]() | $y=2x+\cos x$ |
![]() | $y=\dfrac{1}{3}x^3-\cos x$ |
![]() | $y=2x-\cos x$ |