Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
![]() | $y'=12\cos4x-2\sin4x$ |
![]() | $y'=12\cos4x+2\sin4x$ |
![]() | $y'=-12\cos4x+2\sin4x$ |
![]() | $y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
![]() | $y'=6\cos3x-2\sin2x$ |
![]() | $y'=2\cos3x+\sin2x$ |
![]() | $y'=-6\cos3x+2\sin2x$ |
![]() | $y'=2\cos3x-\sin2x$ |
Đạo hàm của hàm số $y=\sin2x$ là
![]() | $2\cos2x$ |
![]() | $-2\cos2x$ |
![]() | $\cos2x$ |
![]() | $-\cos2x$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
![]() | $\dfrac{23}{3}$ |
![]() | $\dfrac{23}{6}$ |
![]() | $\dfrac{17}{6}$ |
![]() | $\dfrac{17}{3}$ |
Cho hàm số $y=\sin2x$. Khẳng định nào sau đây là đúng?
![]() | $y^2-\left(y'\right)^2=4$ |
![]() | $4y+y''=0$ |
![]() | $4y-y''=0$ |
![]() | $y=y'.\tan2x$ |
Cho hàm số $y=\sin^2x$. Khẳng định nào sau đây đúng?
![]() | $2y'+y''=\sqrt{2}\cos\left(2x-\dfrac{\pi}{4}\right)$ |
![]() | $2y+y'.\tan x=0$ |
![]() | $4y-y''=2$ |
![]() | $4y'+y'''=0$ |
Cho hàm số $y=\sin^2x$. Tính $y^{\left(2018\right)}\left(\pi\right)$.
![]() | $y^{\left(2018\right)}\left(\pi\right)=2^{2017}$ |
![]() | $y^{\left(2018\right)}\left(\pi\right)=2^{2018}$ |
![]() | $y^{\left(2018\right)}\left(\pi\right)=-2^{2017}$ |
![]() | $y^{\left(2018\right)}\left(\pi\right)=-2^{2018}$ |
Cho hàm số $f\left(x\right)=\cos2x$. Tính $P=f''\left(\pi\right)$.
![]() | $P=4$ |
![]() | $P=0$ |
![]() | $P=-4$ |
![]() | $P=-1$ |
Cho hàm số $y=\cos^2x$. Khi đó $y^{\left(3\right)}\left(\dfrac{\pi}{3}\right)$ bằng
![]() | $-2$ |
![]() | $2$ |
![]() | $2\sqrt{3}$ |
![]() | $-2\sqrt{3}$ |
Tìm đạo hàm của hàm số $y=\sqrt{\cos2x}$.
![]() | $y'=\dfrac{\sin2x}{2\sqrt{\cos2x}}$ |
![]() | $y'=\dfrac{-\sin2x}{\sqrt{\cos2x}}$ |
![]() | $y'=\dfrac{\sin2x}{\sqrt{\cos2x}}$ |
![]() | $y'=\dfrac{-\sin2x}{2\sqrt{\cos2x}}$ |
Đạo hàm của hàm số $y=\sin^23x$ là
![]() | $y=-3\sin6x$ |
![]() | $y=6\sin^23x.\cos3x$ |
![]() | $y=3\sin6x$ |
![]() | $y=6\sin6x$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
![]() | $y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ |
![]() | $y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ |
![]() | $y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ |
![]() | $y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm $y'$ của hàm số $y=\sin x+\cos x$.
![]() | $y'=2\cos x$ |
![]() | $y'=2\sin x$ |
![]() | $y'=\sin x-\cos x$ |
![]() | $y'=\cos x-\sin x$ |
Cho hàm số $f\left(x\right)=\sin2x$. Tìm $f'\left(x\right)$.
![]() | $f'\left(x\right)=2\sin2x$ |
![]() | $f'\left(x\right)=\cos2x$ |
![]() | $f'\left(x\right)=2\cos2x$ |
![]() | $f'\left(x\right)=-\dfrac{1}{2}\cos2x$ |
Đạo hàm của hàm số $y=\sin^22x$ trên $\mathbb{R}$ là
![]() | $y'=-2\sin4x$ |
![]() | $y'=2\sin4x$ |
![]() | $y'=-2\cos4x$ |
![]() | $y'=2\cos4x$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
![]() | $y'=-\dfrac{\cos2x}{\sin^22x}$ |
![]() | $y'=\dfrac{2\cos2x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Đạo hàm của hàm số $y=\sin\left(\dfrac{\pi}{2}-2x\right)$ bằng biểu thức nào sau đây?
![]() | $-\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $-2\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $2\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $\cos\left(\dfrac{\pi}{2}-2x\right)$ |
Hàm số nào sau đây không có đạo hàm trên $\mathbb{R}$?
![]() | $y=\left|x-1\right|$ |
![]() | $y=\sqrt{x^2-4x+5}$ |
![]() | $y=\sin x$ |
![]() | $y=\sqrt{2-\cos x}$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
![]() | $-2$ |
![]() | $\dfrac{1}{2}$ |
![]() | $0$ |
![]() | $-\dfrac{1}{2}$ |