Biết \(\displaystyle\int\limits_0^1\dfrac{x^2+2x}{(x+3)^2}\mathrm{\,d}x=\dfrac{a}{4}-4\ln\dfrac{4}{b}\), với \(a,\,b\) là các số nguyên dương. Giá trị của biểu thức \(a^2+b^2\) bằng
![]() | \(25\) |
![]() | \(41\) |
![]() | \(20\) |
![]() | \(34\) |
Biết \(\displaystyle\int\limits_2^3\dfrac{x^2-3x+2}{x^2-x+1}\mathrm{\,d}x=a\ln7+b\ln3+c\ln2+d\) (với \(a\), \(b\), \(c\), \(d\) là các số nguyên). Tính giá trị của biểu thức \(T=a+2b^2+3c^3+4d^4\).
![]() | \(T=6\) |
![]() | \(T=7\) |
![]() | \(T=9\) |
![]() | \(T=5\) |
Cho \(\displaystyle\int\limits_1^3\dfrac{x+3}{x^2+3x+2}\mathrm{\,d}x=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Giá trị của \(a+b+c\) bằng
![]() | \(0\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | \(1\) |
Biết \(I=\displaystyle\int\limits_3^4\dfrac{\mathrm{\,d}x}{x^2+x}=a\ln2+b\ln3+c\ln5\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
![]() | \(S=6\) |
![]() | \(S=2\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |
Biết \(I=\displaystyle\int\limits_0^1\dfrac{x^2+2}{(x+2)^2}\mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a\), \(b\), \(c\) là các số nguyên. Tính \(S=a+b+c\).
![]() | \(S=1\) |
![]() | \(S=2\) |
![]() | \(S=-1\) |
![]() | \(S=0\) |
Cho \(\displaystyle\int\limits^5_1\left|\dfrac{x-2}{x+1}\right| \mathrm{\,d}x=a\ln3+b\ln2+c\) với \(a,\,b,\,c\) là các số nguyên. Giá trị \(P=abc\) là
![]() | \(P=-36\) |
![]() | \(P=0\) |
![]() | \(P=18\) |
![]() | \(P=-18\) |
Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng
![]() | \(1\) |
![]() | \(0\) |
![]() | \(2\) |
![]() | \(-3\) |
Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng
![]() | \(5\) |
![]() | \(4\) |
![]() | \(3\) |
![]() | \(2\) |
Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).
![]() | \(1\) |
![]() | \(0\) |
![]() | \(-1\) |
![]() | \(3\) |
Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{\,d}x=a\ln5+b\ln2\), (\(a,\,b\in\mathbb{Z}\)). Mệnh đề nào sau đây đúng?
![]() | \(a+b=0\) |
![]() | \(a-b=0\) |
![]() | \(a+2b=0\) |
![]() | \(2a-b=0\) |
Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).
![]() | \(S=3\) |
![]() | \(S=6\) |
![]() | \(S=-2\) |
![]() | \(S=0\) |
Cho \(\displaystyle\int\limits_0^1\dfrac{2x^2+3x+1}{2x+3}\mathrm{\,d}x=a\ln5+b\ln3+c\). Tính \(T=a+b+2c\).
![]() | \(T=3\) |
![]() | \(T=0\) |
![]() | \(T=1\) |
![]() | \(T=2\) |
Cho tích phân \(\displaystyle\int\limits_2^3{\dfrac{1}{x^3+x^2}\mathrm{\,d}x}=a\ln3+b\ln2+c\), với \(a,\,b,\,c\in\mathbb{Q}\). Tính \(S=a+b+c\).
![]() | \(S=-\dfrac{2}{3}\) |
![]() | \(S=-\dfrac{7}{6}\) |
![]() | \(S=\dfrac{2}{3}\) |
![]() | \(S=\dfrac{7}{6}\) |
Cho \(\displaystyle\int\limits_1^2\left(x^2+\dfrac{x}{x+1}\right)\mathrm{\,d}x=\dfrac{10}{b}+\ln\dfrac{a}{b}\) với \(a,\,b\in\mathbb{Q}\). Tính \(P=a+b\).
![]() | \(P=1\) |
![]() | \(P=5\) |
![]() | \(P=7\) |
![]() | \(P=2\) |
Cho \(\displaystyle\int\limits_1^2\dfrac{x}{(x+1)^2}\mathrm{\,d}x=a+b\ln2+c\ln3\), với \(a\), \(b\), \(c\) là các số hữu tỷ. Giá trị của \(6a+b+c\) bằng
![]() | \(-2\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | \(-1\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{3x-1}{x^2+6x+9}\mathrm{\,d}x=3\ln\dfrac{a}{b}-\dfrac{5}{6}\), trong đó \(a,\,b\) là hai số nguyên dương và \(\dfrac{a}{b}\) là phân số tối giản. Tính kết quả \(ab\).
![]() | \(-5\) |
![]() | \(7\) |
![]() | \(12\) |
![]() | \(6\) |
Biết \(\displaystyle\int\limits_0^1\dfrac{x+1}{\left(x+2\right)^2}\mathrm{\,d}x=\ln\dfrac{a}{b}-\dfrac{c}{d}\) với \(a,\,b,\,c,\,d\) là các số nguyên dương và \(\dfrac{a}{b},\,\dfrac{c}{d}\) là các phân số tối giản. Tính \(T=a+b+c+d\).
![]() | \(T=13\) |
![]() | \(T=10\) |
![]() | \(T=12\) |
![]() | \(T=11\) |
Cho \(\displaystyle\int\limits_3^4\dfrac{1}{x^2-3x+2}\mathrm{\,d}x=a\ln 2+b\ln3\) \(\left(a,b\in\mathbb{Z}\right)\). Mệnh đề nào dưới đây đúng?
![]() | \(a+b+1=0\) |
![]() | \(a+3b+1=0\) |
![]() | \(a-2b=0\) |
![]() | \(a+b=-2\) |
Cho \(I=\displaystyle\int\limits_0^1\dfrac{x}{1+x}\mathrm{\,d}x=a-\ln b\) với \(a,\,b\) là các số nguyên dương. Giá trị của \(a+b\) bằng
![]() | \(3\) |
![]() | \(4\) |
![]() | \(5\) |
![]() | \(6\) |
Biết \(\displaystyle\int\limits_3^5 \dfrac{x^2+x+1}{x+1} \mathrm{\,d}x=a+\ln\dfrac{b}{2}\) với \(a\), \(b\) là các số nguyên. Tính \(S=a-2b\).
![]() | \(S=2\) |
![]() | \(S=-2\) |
![]() | \(S=5\) |
![]() | \(S=10\) |