Cho hàm số $y=\sin^2x$. Khẳng định nào sau đây đúng?
![]() | $2y'+y''=\sqrt{2}\cos\left(2x-\dfrac{\pi}{4}\right)$ |
![]() | $2y+y'.\tan x=0$ |
![]() | $4y-y''=2$ |
![]() | $4y'+y'''=0$ |
Cho hàm số $y=\cos^2x$. Khi đó $y^{\left(3\right)}\left(\dfrac{\pi}{3}\right)$ bằng
![]() | $-2$ |
![]() | $2$ |
![]() | $2\sqrt{3}$ |
![]() | $-2\sqrt{3}$ |
Cho hàm số $y=\sin2x$. Khẳng định nào sau đây là đúng?
![]() | $y^2-\left(y'\right)^2=4$ |
![]() | $4y+y''=0$ |
![]() | $4y-y''=0$ |
![]() | $y=y'.\tan2x$ |
Cho hàm số $f\left(x\right)=\sqrt{2x-1}$. Tính $f'''\left(1\right)$.
![]() | $3$ |
![]() | $-3$ |
![]() | $\dfrac{3}{2}$ |
![]() | $0$ |
Cho hàm số $f\left(x\right)=\cos2x$. Tính $P=f''\left(\pi\right)$.
![]() | $P=4$ |
![]() | $P=0$ |
![]() | $P=-4$ |
![]() | $P=-1$ |
Đạo hàm của hàm số $y=\sin2x$ là
![]() | $2\cos2x$ |
![]() | $-2\cos2x$ |
![]() | $\cos2x$ |
![]() | $-\cos2x$ |
Cho hàm số $f\left(x\right)=\dfrac{1}{2x-1}$. Tính $f''\left(-1\right)$.
![]() | $-\dfrac{8}{27}$ |
![]() | $\dfrac{2}{9}$ |
![]() | $\dfrac{8}{27}$ |
![]() | $-\dfrac{4}{27}$ |
Đạo hàm cấp hai của hàm số $y=f\left(x\right)=x\sin x-3$ là biểu thức nào trong các biểu thức sau?
![]() | $f''\left(x\right)=2\cos x-x\sin x$ |
![]() | $f''\left(x\right)=-x\sin x$ |
![]() | $f''\left(x\right)=\sin x-x\cos x$ |
![]() | $f''\left(x\right)=1+\cos x$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
![]() | $y'=12\cos4x-2\sin4x$ |
![]() | $y'=12\cos4x+2\sin4x$ |
![]() | $y'=-12\cos4x+2\sin4x$ |
![]() | $y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Đạo hàm của hàm số $y=\sin^23x$ là
![]() | $y=-3\sin6x$ |
![]() | $y=6\sin^23x.\cos3x$ |
![]() | $y=3\sin6x$ |
![]() | $y=6\sin6x$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
![]() | $f'\left(x\right)=2\sin4x-3\sin3x$ |
![]() | $f'\left(x\right)=2\sin4x+3\sin3x$ |
![]() | $f'\left(x\right)=\sin4x+3\sin3x$ |
![]() | $f'\left(x\right)=2\sin2x+3\sin3x$ |
Cho hàm số $f\left(x\right)=\sin2x$. Tìm $f'\left(x\right)$.
![]() | $f'\left(x\right)=2\sin2x$ |
![]() | $f'\left(x\right)=\cos2x$ |
![]() | $f'\left(x\right)=2\cos2x$ |
![]() | $f'\left(x\right)=-\dfrac{1}{2}\cos2x$ |
Đạo hàm của hàm số $y=\sin^22x$ trên $\mathbb{R}$ là
![]() | $y'=-2\sin4x$ |
![]() | $y'=2\sin4x$ |
![]() | $y'=-2\cos4x$ |
![]() | $y'=2\cos4x$ |
Tìm đạo hàm của hàm số $y=\dfrac{1}{\sin2x}$.
![]() | $y'=-\dfrac{\cos2x}{\sin^22x}$ |
![]() | $y'=\dfrac{2\cos2x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos x}{\sin^22x}$ |
![]() | $y'=-\dfrac{2\cos2x}{\sin^22x}$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
![]() | $y'=6\cos3x-2\sin2x$ |
![]() | $y'=2\cos3x+\sin2x$ |
![]() | $y'=-6\cos3x+2\sin2x$ |
![]() | $y'=2\cos3x-\sin2x$ |
Đạo hàm của hàm số $y=\sin\left(\dfrac{\pi}{2}-2x\right)$ bằng biểu thức nào sau đây?
![]() | $-\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $-2\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $2\cos\left(\dfrac{\pi}{2}-2x\right)$ |
![]() | $\cos\left(\dfrac{\pi}{2}-2x\right)$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
![]() | $-2$ |
![]() | $\dfrac{1}{2}$ |
![]() | $0$ |
![]() | $-\dfrac{1}{2}$ |
Đạo hàm của hàm số $y=\dfrac{\sin^2x-\cos^2x}{\sin x\cdot\cos x}$ tại điểm $x=\dfrac{\pi}{6}$ bằng
![]() | $-\dfrac{8}{3}$ |
![]() | $\dfrac{8}{3}$ |
![]() | $\dfrac{16}{3}$ |
![]() | $-\dfrac{16}{3}$ |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
![]() | \(3\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | \(5\) |
Hàm số \(f(x)=\log_3(\sin x)\) có đạo hàm là
![]() | \(f'(x)=\dfrac{\tan x}{\ln3}\) |
![]() | \(f'(x)=\cot x\cdot\ln3\) |
![]() | \(f'(x)=\dfrac{1}{\sin x\cdot\ln3}\) |
![]() | \(f'(x)=\dfrac{\cot x}{\ln3}\) |