Ngân hàng bài tập

Bài tập tương tự

C

Đồ thị của hàm số $y=-x^4+4x^2-3$ cắt trục tung tại điểm có tung độ bằng

$0$
$3$
$1$
$-3$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tìm tọa độ giao điểm \(M\) của đồ thị hàm số \(y=\dfrac{2x-1}{x+2}\) với trục tung.

\(M\left(\dfrac{1}{2};0\right)\)
\(M\left(0;2\right)\)
\(M\left(0;-\dfrac{1}{2}\right)\)
\(M\left(-\dfrac{1}{2};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích \(S\) của hình phẳng \((H)\) giới hạn bởi đồ thị hàm số \(y=-x^3+3x^2-2\), hai trục tọa độ và đường thẳng \(x=2\).

\(S=\dfrac{1}{3}\)
\(S=\dfrac{19}{2}\)
\(S=\dfrac{9}{2}\)
\(S=\dfrac{5}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là

\(3\)
\(0\)
\(2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.

Tọa độ giao điểm của đồ thị đã cho và trục tung là

$(4;0)$
$(0;4)$
$(0;3)$
$(3;0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?

$y=x^3-3x+3$
$y=x^3+3x+1$
$y=-x^3+3x+5$
$y=x^3-3x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số $y=\dfrac{x-4}{2x+2}$ cắt trục tung tại điểm có tung độ bằng

$\dfrac{1}{2}$
$-1$
$-2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?

$2$
$5$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

$(0;-2)$
$(2;0)$
$(-2;0)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?

$y=x^3-3x+3$
$y=x^3+3x+1$
$y=-x^3+3x+5$
$y=x^3-3x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=x^3+ax^2+bx+c$ có đồ thị $\left(\mathscr{C}\right)$. Mệnh đề nào sau đây sai?

Đồ thị $\left(\mathscr{C}\right)$ luôn có tâm đối xứng
Hàm số $f(x)$ luôn có cực trị
Đồ thị $\left(\mathscr{C}\right)$ luôn cắt trục hoành
$\lim\limits_{x\to+\infty}f(x)=+\infty$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là

$9$
$3$
$6$
$7$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Giao điểm của hai parabol $y=x^2-4$ và $y=14-x^2$ là

$M(2;10)$ và $N(-2;10)$
$M\left(\sqrt{14};10\right)$ và $N(-14;10)$
$M(3;5)$ và $N(-3;5)$
$M\left(\sqrt{18};14\right)$ và $M\left(-\sqrt{18};14\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Parabol $\left(\mathscr{P}\right)\colon y=x^2+4x+4$ có số điểm chung với trục hoành là

$0$
$1$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tọa độ giao điểm của parabol $\left(\mathscr{P}\right)\colon y=x^2-4x$ với đường thẳng $d\colon y=-x-2$ là

$M(-1;-1)$, $N(-2;0)$
$M(1;-3)$, $N(2;-4)$
$M(0;-2)$, $N(2;-4)$
$M(-3;1)$, $N(3;-5)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tọa độ giao điểm của parabol $\left(P\right)\colon y=x^2-4x$ và đường thẳng $d\colon y=-x-2$ là

$M\left(-1;-1\right)$, $N\left(-2;0\right)$
$M\left(1;-3\right)$, $N\left(2;-4\right)$
$M\left(0;-2\right)$, $N\left(2;-4\right)$
$M\left(-3;1\right)$, $N\left(3;-5\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.

\(m\in(2;+\infty)\)
\(m\in(-2;2)\)
\(m\in\mathbb{R}\)
\(m\in(-\infty;-2)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị của tham số \(m\) để phương trình \(x^3-12x+m-2=0\) có \(3\) nghiệm phân biệt.

\(m\in[-14;18]\)
\(m\in(-14;18)\)
\(m\in(-18;14)\)
\(\left[\begin{array}{l}m<-14\\ m>18\end{array}\right.\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x+1\) và \(y=\dfrac{2x+4}{x-1}\). Tìm hoành độ trung điểm \(I\) của đoạn thẳng \(MN\).

\(x_I=-\dfrac{5}{2}\)
\(x_I=2\)
\(x_I=\dfrac{5}{2}\)
\(x_I=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x^4-2x^2+2\) và \(y=4-x^2\). Tọa độ trung điểm \(I\) của đoạn thẳng \(MN\) là

\((1;0)\)
\((0;2)\)
\((2;0)\)
\((0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự