Đồ thị của hàm số $y=-x^4+4x^2-3$ cắt trục tung tại điểm có tung độ bằng
![]() | $0$ |
![]() | $3$ |
![]() | $1$ |
![]() | $-3$ |
Tìm tọa độ giao điểm \(M\) của đồ thị hàm số \(y=\dfrac{2x-1}{x+2}\) với trục tung.
![]() | \(M\left(\dfrac{1}{2};0\right)\) |
![]() | \(M\left(0;2\right)\) |
![]() | \(M\left(0;-\dfrac{1}{2}\right)\) |
![]() | \(M\left(-\dfrac{1}{2};0\right)\) |
Tính diện tích \(S\) của hình phẳng \((H)\) giới hạn bởi đồ thị hàm số \(y=-x^3+3x^2-2\), hai trục tọa độ và đường thẳng \(x=2\).
![]() | \(S=\dfrac{1}{3}\) |
![]() | \(S=\dfrac{19}{2}\) |
![]() | \(S=\dfrac{9}{2}\) |
![]() | \(S=\dfrac{5}{2}\) |
Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là
![]() | \(3\) |
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.
Tọa độ giao điểm của đồ thị đã cho và trục tung là
![]() | $(4;0)$ |
![]() | $(0;4)$ |
![]() | $(0;3)$ |
![]() | $(3;0)$ |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
![]() | $y=x^3-3x+3$ |
![]() | $y=x^3+3x+1$ |
![]() | $y=-x^3+3x+5$ |
![]() | $y=x^3-3x+1$ |
Đồ thị hàm số $y=\dfrac{x-4}{2x+2}$ cắt trục tung tại điểm có tung độ bằng
![]() | $\dfrac{1}{2}$ |
![]() | $-1$ |
![]() | $-2$ |
![]() | $4$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?
![]() | $2$ |
![]() | $5$ |
![]() | $3$ |
![]() | $4$ |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
![]() | $(0;-2)$ |
![]() | $(2;0)$ |
![]() | $(-2;0)$ |
![]() | $(0;2)$ |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
![]() | $y=x^3-3x+3$ |
![]() | $y=x^3+3x+1$ |
![]() | $y=-x^3+3x+5$ |
![]() | $y=x^3-3x+1$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ có đồ thị $\left(\mathscr{C}\right)$. Mệnh đề nào sau đây sai?
![]() | Đồ thị $\left(\mathscr{C}\right)$ luôn có tâm đối xứng |
![]() | Hàm số $f(x)$ luôn có cực trị |
![]() | Đồ thị $\left(\mathscr{C}\right)$ luôn cắt trục hoành |
![]() | $\lim\limits_{x\to+\infty}f(x)=+\infty$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là
![]() | $9$ |
![]() | $3$ |
![]() | $6$ |
![]() | $7$ |
Giao điểm của hai parabol $y=x^2-4$ và $y=14-x^2$ là
![]() | $M(2;10)$ và $N(-2;10)$ |
![]() | $M\left(\sqrt{14};10\right)$ và $N(-14;10)$ |
![]() | $M(3;5)$ và $N(-3;5)$ |
![]() | $M\left(\sqrt{18};14\right)$ và $M\left(-\sqrt{18};14\right)$ |
Parabol $\left(\mathscr{P}\right)\colon y=x^2+4x+4$ có số điểm chung với trục hoành là
![]() | $0$ |
![]() | $1$ |
![]() | $2$ |
![]() | $3$ |
Tọa độ giao điểm của parabol $\left(\mathscr{P}\right)\colon y=x^2-4x$ với đường thẳng $d\colon y=-x-2$ là
![]() | $M(-1;-1)$, $N(-2;0)$ |
![]() | $M(1;-3)$, $N(2;-4)$ |
![]() | $M(0;-2)$, $N(2;-4)$ |
![]() | $M(-3;1)$, $N(3;-5)$ |
Tọa độ giao điểm của parabol $\left(P\right)\colon y=x^2-4x$ và đường thẳng $d\colon y=-x-2$ là
![]() | $M\left(-1;-1\right)$, $N\left(-2;0\right)$ |
![]() | $M\left(1;-3\right)$, $N\left(2;-4\right)$ |
![]() | $M\left(0;-2\right)$, $N\left(2;-4\right)$ |
![]() | $M\left(-3;1\right)$, $N\left(3;-5\right)$ |
Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.
![]() | \(m\in(2;+\infty)\) |
![]() | \(m\in(-2;2)\) |
![]() | \(m\in\mathbb{R}\) |
![]() | \(m\in(-\infty;-2)\) |
Tìm các giá trị của tham số \(m\) để phương trình \(x^3-12x+m-2=0\) có \(3\) nghiệm phân biệt.
![]() | \(m\in[-14;18]\) |
![]() | \(m\in(-14;18)\) |
![]() | \(m\in(-18;14)\) |
![]() | \(\left[\begin{array}{l}m<-14\\ m>18\end{array}\right.\) |
Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x+1\) và \(y=\dfrac{2x+4}{x-1}\). Tìm hoành độ trung điểm \(I\) của đoạn thẳng \(MN\).
![]() | \(x_I=-\dfrac{5}{2}\) |
![]() | \(x_I=2\) |
![]() | \(x_I=\dfrac{5}{2}\) |
![]() | \(x_I=1\) |
Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x^4-2x^2+2\) và \(y=4-x^2\). Tọa độ trung điểm \(I\) của đoạn thẳng \(MN\) là
![]() | \((1;0)\) |
![]() | \((0;2)\) |
![]() | \((2;0)\) |
![]() | \((0;1)\) |