Ngân hàng bài tập

Bài tập tương tự

B

Rút gọn biểu thức \(P=\dfrac{a^{\sqrt{3}+1}\cdot a^{2-\sqrt{3}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}\) với \(a>0\).

\(P=a\)
\(P=a^3\)
\(P=a^4\)
\(P=a^5\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Kết quả viết dưới dạng lũy thừa với số mũ hữu tỉ của biểu thức \(F=\dfrac{\sqrt{a\sqrt{a\sqrt{a\sqrt{a}}}}}{a^{\tfrac{11}{16}}}\) với \(a>0\) là

\(F=a^{\tfrac{1}{4}}\)
\(F=a^{\tfrac{3}{8}}\)
\(F=a^{\tfrac{1}{2}}\)
\(F=a^{\tfrac{3}{4}}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=x^{\sqrt{2}-1}$ là

$\big(-\infty;\sqrt{2}\big)$
$\mathbb{R}\setminus\{0\}$
$\mathbb{R}$
$(0;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Rút gọn biểu thức $Q=b^{\tfrac{5}{3}}:\sqrt[3]{b^2}$, $b>0$.

$Q=b$
$Q=b^{\tfrac{1}{3}}$
$Q=b^2$
$Q=\sqrt{b^4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đạo hàm của hàm số $y=x^{2023}$ là

$y'=2023x^{2023}$
$y'=2022x^{2023}$
$y'=2023x^{2022}$
$y'=\dfrac{1}{2023}x^{2022}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Với $m,\,n$ là hai số thực bất kỳ, $a$ là số thực dương tùy ý. Khẳng định nào sau đây sai?

$a^{m\cdot n}=\big(a^n\big)^m$
$a^{m-n}=\dfrac{a^m}{a^n}$
$a^{m+n}=a^m+a^n$
$a^{m\cdot n}=\big(a^m\big)^n$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là

$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$
$y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Biểu thức $a^{\tfrac{4}{3}}\sqrt{a}$ ($a>0$) viết dưới dạng lũy thừa với số mũ hữu tỉ là

$a^{\tfrac{11}{6}}$
$a^{\tfrac{10}{3}}$
$a^{\tfrac{7}{3}}$
$a^{\tfrac{5}{6}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Số $\dfrac{\sqrt[3]{16}}{8}$ viết dưới dạng lũy thừa với số mũ hữu tỉ là

$2^{\tfrac{13}{3}}$
$2^{-\tfrac{13}{3}}$
$2^{\tfrac{5}{3}}$
$2^{-\tfrac{5}{3}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đạo hàm của hàm số $y=(x+1)^\pi$ là

$y'=\pi(x+1)^\pi$
$y'=(\pi-1)(x+1)^{\pi-1}$
$y'=\pi(x+1)^{\pi-1}$
$y'=(x+1)^{\pi-1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=\big(2x^2-1\big)^{\tfrac{1}{2}}$. Giá trị của hàm số đã cho tại điểm $x=2$ bằng

$3$
$\sqrt{7}$
$\sqrt{3}$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên khoảng $(0;+\infty)$, đạo hàm của hàm số $y=x^{\pi}$ là

$y'=\pi x^{\pi-1}$
$y'=x^{\pi-1}$
$y'=\dfrac{1}{\pi}x^{\pi-1}$
$y'=\pi x^{\pi}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tập xác định của hàm số $y=(x+2)^{-2022}$ là

$[-2;+\infty)$
$(-2;+\infty)$
$\mathbb{R}\setminus\{-2\}$
$\mathbb{R}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $x,\,y$ là hai số thực dương và $m,\,n$ là hai số thực tùy ý. Đẳng thức nào sau đây là sai?

$\dfrac{x^m}{x^n}=x^{m-n}$
$(xy)^n=x^n\cdot y^n$
$\dfrac{x^m}{y^n}=\left(\dfrac{x}{y}\right)^{m-n}$
$\big(x^n\big)^m=x^{n\cdot m}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $f(x)=\big(1-\sqrt[4]{x}\big)\big(1+\sqrt[4]{x}\big)\big(1+\sqrt{x}\big)(1+x)$. Tính $f\left(\dfrac{1}{2^{64}}\right)$.

$1-\dfrac{1}{2^{128}}$
$1+\dfrac{1}{2^{64}}$
$1+\dfrac{1}{2^{128}}$
$1-\dfrac{1}{2^{64}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Rút gọn biểu thức $A=\dfrac{\sqrt[3]{a^7}\cdot a^{\tfrac{11}{3}}}{a^4\cdot\sqrt[7]{a^{-5}}}$ với $a>0$ ta được kết quả là

$A=a^{\tfrac{9}{7}}$
$A=a^{\tfrac{19}{7}}$
$A=a^{\tfrac{43}{5}}$
$A=a^{\tfrac{157}{105}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho đồ thị các hàm số $y=x^\alpha$ và $y=x^\beta$ trên khoảng $(0;+\infty)$.

Mệnh đề nào dưới đây đúng?

$0< \alpha< 1< \beta$
$\alpha< 0< 1< \beta$
$0< \beta< 1< \alpha$
$\beta< 0< 1< \alpha$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đạo hàm của hàm số $y=\big(x^4+3\big)^{\tfrac{1}{3}}$ là

$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{1}{3}x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
$y'=\dfrac{4}{3}x^3\big(x^4+3\big)^{\tfrac{2}{3}}$
$y'=4x^3\big(x^4+3\big)^{-\tfrac{2}{3}}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đạo hàm của hàm số $y=x^{-3}$ là

$y'=-x^{-4}$
$y'=-\dfrac{1}{2}x^{-2}$
$y'=-\dfrac{1}{3}x^{-4}$
$y'=-3x^{-4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho các số thực $a,\,b$ thỏa $\left(\sqrt{2019}-\sqrt{2018}\right)^a>\left(\sqrt{2019}-\sqrt{2018}\right)^b$. Kết luận nào sau đây đúng?

$a>b$
$a< b$
$a=b$
$a\geq b$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự