Hàm số $F\left(x\right)=\cos3x$ là nguyên hàm của hàm số
![]() | $f\left(x\right)=\dfrac{\sin3x}{3}$ |
![]() | $f\left(x\right)=-3\sin3x$ |
![]() | $f\left(x\right)=3\sin 3x$ |
![]() | $f\left(x\right)=-\sin3x$ |
Tìm nguyên hàm của hàm số $f(x)=\cos3x$.
![]() | $\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\dfrac{1}{3}\sin3x+C$ |
![]() | $\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\sin3x+C$ |
![]() | $\displaystyle\displaystyle\int\cos3x\mathrm{d}x=3\sin3x+C$ |
![]() | $\displaystyle\displaystyle\int\cos3x\mathrm{d}x=-\dfrac{1}{3}\sin3x+C$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$ |
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$ |
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$ |
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$ |
Cho hàm số $f(x)=1-\dfrac{1}{\cos^22x}$. Khẳng định nào dưới đây đúng?
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\tan2x+C$ |
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\cot2x+C$ |
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\dfrac{1}{2}\tan2x+C$ |
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\tan2x+C$ |
Cho $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cos x+C$. Khẳng định nào dưới đây đúng?
![]() | $f(x)=-\sin x$ |
![]() | $f(x)=-\cos x$ |
![]() | $f(x)=\sin x$ |
![]() | $f(x)=\cos x$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
![]() | $5$ |
![]() | $4$ |
![]() | $6$ |
![]() | $7$ |
Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?
![]() | $f(x)=\dfrac{1}{2}x^2-\cos x$ |
![]() | $f(x)=1-\sin x$ |
![]() | $f(x)=1+\sin x$ |
![]() | $f(x)=\dfrac{1}{2}x^2+\sin x$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
![]() | $\dfrac{x^2}{2}+\cos2x+C$ |
![]() | $\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ |
![]() | $x^2+\dfrac{1}{2}\cos2x+C$ |
![]() | $\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
![]() | $f\left(x\right)=3x+5\sin x+2$ |
![]() | $f\left(x\right)=3x-5\sin x-5$ |
![]() | $f\left(x\right)=3x-5\sin x+5$ |
![]() | $f\left(x\right)=3x+5\sin x+5$ |
Họ nguyên hàm của hàm số $f\left(x\right)=3x^2+\cos x$ là
![]() | $x^3+\cos x+C$ |
![]() | $x^3+\sin x+C$ |
![]() | $x^3-\cos x+C$ |
![]() | $3x^3-\sin x+C$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?
![]() | $F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$ |
![]() | $F(x)=\cos(1-2x)$ |
![]() | $F(x)=\cos(1-2x)+1$ |
![]() | $F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
![]() | $F\left(\dfrac{\pi}{6}\right)=0$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
![]() | $\dfrac{23}{3}$ |
![]() | $\dfrac{23}{6}$ |
![]() | $\dfrac{17}{6}$ |
![]() | $\dfrac{17}{3}$ |
Cho hàm số $f\left(x\right)=\cos2x$. Tính $P=f''\left(\pi\right)$.
![]() | $P=4$ |
![]() | $P=0$ |
![]() | $P=-4$ |
![]() | $P=-1$ |
Cho hàm số $y=\cos^2x$. Khi đó $y^{\left(3\right)}\left(\dfrac{\pi}{3}\right)$ bằng
![]() | $-2$ |
![]() | $2$ |
![]() | $2\sqrt{3}$ |
![]() | $-2\sqrt{3}$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
![]() | $y'=12\cos4x-2\sin4x$ |
![]() | $y'=12\cos4x+2\sin4x$ |
![]() | $y'=-12\cos4x+2\sin4x$ |
![]() | $y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số $y=\sqrt{\cos2x}$.
![]() | $y'=\dfrac{\sin2x}{2\sqrt{\cos2x}}$ |
![]() | $y'=\dfrac{-\sin2x}{\sqrt{\cos2x}}$ |
![]() | $y'=\dfrac{\sin2x}{\sqrt{\cos2x}}$ |
![]() | $y'=\dfrac{-\sin2x}{2\sqrt{\cos2x}}$ |