Trong không gian $Oxyz$, cho hai điểm $A(2;1;1)$, $B(-1;2;1)$. Tọa độ trung điểm của đoạn thẳng $AB$ là
$I(-3;1;0)$ | |
$I\left(\dfrac{1}{2};\dfrac{3}{2};1\right)$ | |
$I\left(-\dfrac{3}{2};-\dfrac{1}{2};0\right)$ | |
$I\left(\dfrac{1}{3};1;\dfrac{2}{3}\right)$ |
Trong không gian \(Oxyz\), cho hai điểm \(A(2;-4;3)\) và \(B(2;2;9)\). Trung điểm của đoạn thẳng \(AB\) có tọa độ là
\((0;3;3)\) | |
\((4;-2;12)\) | |
\((2;-1;6)\) | |
\(\left(0;\dfrac{3}{2};\dfrac{3}{2}\right)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(-1;1;0)\) và \(B(1;3;2)\). Gọi \(I\) là trung điểm của đoạn thẳng \(AB\). Tọa độ của \(I\) là
\((0;4;2)\) | |
\((2;2;2)\) | |
\((-2;-2;-2)\) | |
\((0;2;1)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-3;2)\) và \(B(3;-1;4)\). Tìm tọa độ trung điểm \(I\) của đoạn thẳng \(AB\).
\(I(2;2;2)\) | |
\(I(2;-2;3)\) | |
\(I(1;1;1)\) | |
\(I(4;-4;6)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-1;2)\) và \(B(3;1;0)\). Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là
\(I(2;0;1)\) | |
\(I(1;1;-1)\) | |
\(I(2;2;-2)\) | |
\(I(4;0;2)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;2;3)\) và \(B(3;0;-5)\). Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là
\(I(2;1;-1)\) | |
\(I(2;2;-2)\) | |
\(I(4;2;-2)\) | |
\(I(-1;1;4)\) |
Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là
$(3;7)$ | |
$(-3;0)$ | |
$(3;0)$ | |
$(-3;7)$ |
Gọi $M, N$ lần lượt là điểm biểu diễn hình học các số phức $z=4+i$ và $w=2+3 i$. Tọa độ trung điểm $I$ của đoạn thẳng $MN$ là
$(2;-2)$ | |
$(-2;2)$ | |
$(3;2)$ | |
$\left(\dfrac{3}{2};\dfrac{7}{2}\right)$ |
Trong mặt phẳng $Oxy$, cho hai điểm $A\left(1;0\right)$ và $B\left(0;-2\right)$. Tọa độ trung điểm của đoạn thẳng $AB$ là
$\left(\dfrac{1}{2};-1\right)$ | |
$\left(-1;\dfrac{1}{2}\right)$ | |
$\left(\dfrac{1}{2};-2\right)$ | |
$\left(1;-1\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $M\left(-\dfrac{5}{2};-1\right)$, $N\left(-\dfrac{3}{2};-\dfrac{7}{2}\right)$, $P\left(0;\dfrac{1}{2}\right)$ lần lượt là trung điểm các cạnh $BC$, $CA$ và $AB$. Tìm tọa độ trọng tâm $G$ của tam giác $ABC$.
$G\left(-\dfrac{4}{3};-\dfrac{4}{3}\right)$ | |
$G(-4;-4)$ | |
$G\left(\dfrac{4}{3};-\dfrac{4}{3}\right)$ | |
$G(4;-4)$ |
Trong mặt phẳng $Oxy$, cho $A(4;1)$, $B(3;2)$. Tìm tọa độ $M$ sao cho $B$ là trung điểm đoạn thẳng $AM$.
$\left(2;1\right)$ | |
$\left(3;2\right)$ | |
$\left(2;3\right)$ | |
$\left(5;0\right)$ |
Trong mặt phẳng $Oxy$, cho hai điểm $A(3;-5)$, $B(1;7)$. Trung điểm $I$ của đoạn thẳng $AB$ có tọa độ là
$I(2;-1)$ | |
$I(-2;12)$ | |
$I(4;2)$ | |
$I(2;1)$ |
Cho tam giác $ABC$. Biết trung điểm của các cạnh $BC$, $CA$, $AB$ có tọa độ lần lượt là $M(1;-1)$, $N(3;2)$, $P(0;-5)$. Khi đó tọa độ của điểm $A$ là
$(-2;2)$ | |
$(5;1)$ | |
$\left(\sqrt{5};0\right)$ | |
$\left(2;\sqrt{2}\right)$ |
Trong mặt phẳng \(Oxy\), cho hai điểm \(A(2;-3)\), \(B(4;7)\). Tìm tọa độ trung điểm \(I\) của đoạn thẳng \(AB\).
\(I(6;4)\) | |
\(I(2;0)\) | |
\(I(3;2)\) | |
\(I(8;-21)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(-1;5;3)\) và \(M(2;1;-2)\). Tìm tọa điểm \(B\) biết rằng \(M\) là trung điểm của đoạn thẳng \(AB\).
\(B\left(\dfrac{1}{2};3;\dfrac{1}{2}\right)\) | |
\(B(-4;9;8)\) | |
\(B(5;3;-7)\) | |
\(B(5;-3;-7)\) |
Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t \\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
$(1;2;3)$ | |
$(2;2;3)$ | |
$(1;2;-3)$ | |
$(2;-2;-3)$ |
Trong không gian $Oxyz$, tọa độ hình chiếu vuông góc của điểm $M(1;0;1)$ lên đường thẳng $\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ là
$\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)$ | |
$(2;4;6)$ | |
$(0;0;0)$ | |
$\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y+2z-6=0$. Điểm nào sau đây thuộc mặt phẳng $(P)$?
$M(1;-1;1)$ | |
$I(2;0;-2)$ | |
$N(1;0;-2)$ | |
$P(3;0;0)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Hình chiếu vuông góc của điểm $A$ trên mặt phẳng $(Oxy)$ là điểm
$M(0;0;3)$ | |
$N(1;2;0)$ | |
$Q(0;2;0)$ | |
$P(1;0;0)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Điểm đối xứng với $A$ qua mặt phẳng $(Oxz)$ có tọa độ là
$(1;-2;3)$ | |
$(1;2;-3)$ | |
$(-1;-2;-3)$ | |
$(-1;2;3)$ |