Ngân hàng bài tập

Bài tập tương tự

B

Kí hiệu $M$ và $m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=x^2+\sqrt{4-x^2}$. Khi đó $M+m$ bằng

$\dfrac{25}{4}$
$\dfrac{15}{4}$
$4$
$\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số $f(x)=x^4-10x^2+2$ trên đoạn $[-1;2]$ bằng

$-1$
$2$
$-23$
$-22$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số $y=f(x)$ có dạng như đường cong trong hình vẽ bên.

Gọi $M$ là giá trị lớn nhất, $m$ là giá trị nhỏ nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$. Tính $P=M-2m$.

$P=5$
$P=3$
$P=1$
$P=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f(x)=(m-1)x^4-2mx^2+1$ với $m$ là tham số thực. Nếu $\min\limits_{[0;3]}f(x)=f(2)$ thì $\max\limits_{[0;3]}f(x)$ bằng

$-\dfrac{13}{3}$
$4$
$-\dfrac{14}{3}$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị nhỏ nhất $m$ của hàm số $y=x^4-x^2+13$ trên đoạn $[-2;3]$.

$m=13$
$m=\dfrac{51}{4}$
$m=\dfrac{49}{4}$
$m=\dfrac{205}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $M$ và $m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\dfrac{2x+3}{x-2}$ trên đoạn $[0;1]$. Tính giá trị $M+m$.

$-2$
$\dfrac{7}{2}$
$-\dfrac{13}{2}$
$-\dfrac{17}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)=\log_2^3x-\log_2x^3+m$ ($m$ là tham số thực). Gọi $S$ là tập hợp tất cả các giá trị của $m$ sao cho $\max\limits_{\left[1;4\right]}\left|f\left(x\right)\right|+\min\limits_{\left[1;4\right]}\left|f\left(x\right)\right|=6$. Tổng bình phương các phần tử của $S$ bằng

$13$
$18$
$5$
$8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=x+\dfrac{1}{x}\) trên đoạn \(\left[\dfrac{1}{2};3\right]\). Khi đó \(M+m\) bằng

\(\dfrac{9}{2}\)
\(\dfrac{35}{6}\)
\(\dfrac{7}{2}\)
\(\dfrac{16}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=\dfrac{3x-1}{x+2}\). Gọi \(M,\,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn \([0;2]\). Khi đó \(4M-2m\) bằng

\(10\)
\(6\)
\(5\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) liên tục trên đoạn \([-3;2]\) và có bảng biến thiên như sau:

Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(f(x)\) trên đoạn \([-1;2]\). Tính \(M+m\).

\(3\)
\(2\)
\(1\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(M,\,N\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=x^3-3x^2+1\) trên đoạn \([1;2]\). Khi đó tổng \(M+N\) bằng

\(2\)
\(-2\)
\(0\)
\(-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=x\sqrt{1-x^2}\). Khi đó \(M-m\) bằng

\(1\)
\(2\)
\(4\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm giá trị lớn nhất của hàm số \(y=x^4-2x^2\) trên đoạn \([0;1]\).

\(-1\)
\(0\)
\(1\)
\(-2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị lớn nhất của hàm số \(y=x^4-3x^2+2\) trên đoạn \([0;3]\) là

\(57\)
\(55\)
\(56\)
\(54\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) liên tục trên đoạn \([-1;3]\) và có đồ thị như hình vẽ. Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \([-1;3]\). Giá trị của \(M-m\) bằng

\(0\)
\(1\)
\(4\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị nhỏ nhất của hàm số \(y=x^4-10x^2+2\) trên đoạn \(\left[-1;2\right]\) bằng

\(2\)
\(-23\)
\(-22\)
\(-7\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(y=x^4+8x^2+m\) có giá trị nhỏ nhất trên \([1;3]\) bằng \(6\). Tham số thực \(m\) bằng

\(-42\)
\(6\)
\(15\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giá trị lớn nhất của hàm số \(f\left(x\right)=-x^4+12x^2+1\) trên đoạn \(\left[-1;2\right]\) bằng

\(1\)
\(37\)
\(33\)
\(12\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f(x)=ax^3+cx+d$ ($a\neq0$) có $\min\limits_{x\in(0;+\infty)}f(x)=f(2)$. Tìm giá trị lớn nhất của hàm số trên đoạn $[-3;1]$.

$24a+d$
$d-16a$
$8a-d$
$d+16a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.

Khẳng định nào sau đây đúng?

$\max\limits_{[-1;3]}f(x)=f(0)$
$\max\limits_{[-1;3]}f(x)=f(3)$
$\max\limits_{[-1;3]}f(x)=f(-1)$
$\max\limits_{[-1;3]}f(x)=f(2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự