Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.
![]() | $60^\circ$ |
![]() | $45^\circ$ |
![]() | $30^\circ$ |
![]() | $75^\circ$ |
Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.
![]() | $60^\circ$ |
![]() | $45^\circ$ |
![]() | $30^\circ$ |
![]() | $75^\circ$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng
![]() | $3a^3$ |
![]() | $a^3$ |
![]() | $12\sqrt{2}a^3$ |
![]() | $4\sqrt{2}a^3$ |
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=a$, $BC=2a$ và $AA'=3a$ (tham khảo hình bên).
Khoảng cách giữa hai đường thẳng $BD$ và $A'C'$ bằng
![]() | $a$ |
![]() | $a\sqrt{2}$ |
![]() | $2a$ |
![]() | $3a$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $B$, $AC=2$, $AB=\sqrt{3}$ và $AA'=1$ (tham khảo hình bên).
Góc giữa hai mặt phẳng $(ABC')$ và $(ABC)$ bằng
![]() | $30^\circ$ |
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $60^\circ$ |
Cho khối hộp chữ nhật $ABCD.A'B'C'D'$ có đáy hình vuông. $BD=2a$, góc giữa hai mặt phẳng $\left(A'BD\right)$ và $(ABCD)$ bằng $30^\circ$. Thể tích của khối hộp chữ nhật đã cho bằng
![]() | $6\sqrt{3}a^3$ |
![]() | $\dfrac{2\sqrt{3}}{9}a^3$ |
![]() | $2\sqrt{3}a^3$ |
![]() | $\dfrac{2\sqrt{3}}{3}a^3$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có tất cả các cạnh bằng nhau (tham khảo hình bên).
Góc giữa hai đường thẳng $AA'$ và $BC'$ bằng
![]() | $30^\circ$ |
![]() | $90^\circ$ |
![]() | $45^\circ$ |
![]() | $60^\circ$ |
Các kích thước của một bể bơi được cho trên hình vẽ (mặt nước có dạng hình chữ nhật).
Hãy tính xem bể bơi chứa được bao nhiêu mét khối nước khi nó đầy ắp nước?
![]() | $1000$m$^3$ |
![]() | $640$m$^3$ |
![]() | $570$m$^3$ |
![]() | $500$m$^3$ |
Tính thể tích của khối gỗ có hình dạng dưới đây
![]() | $328$cm$^3$ |
![]() | $456$cm$^3$ |
![]() | $584$cm$^3$ |
![]() | $712$cm$^3$ |
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là hình thoi cạnh \(a\), \(BD=a\sqrt{3}\), \(AA'=4a\) (minh họa như hình trên). Thể tích của khối lăng trụ đã cho bằng
![]() | \(2\sqrt{3}a^3\) |
![]() | \(4\sqrt{3}a^3\) |
![]() | \(\dfrac{2\sqrt{3}a^3}{3}\) |
![]() | \(\dfrac{4\sqrt{3}a^3}{3}\) |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).
Thể tích của khối chóp $S.ABC$ bằng
![]() | $\dfrac{a^3}{8}$ |
![]() | $\dfrac{3a^3}{8}$ |
![]() | $\dfrac{\sqrt{3}a^3}{12}$ |
![]() | $\dfrac{a^3}{4}$ |
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\sqrt{3}\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\sqrt{2}\) (như hình minh họa trên). Góc giữa đường thẳng \(SC\) và mặt phẳng \((ABCD)\) bằng
![]() | \(45^\circ\) |
![]() | \(30^\circ\) |
![]() | \(60^\circ\) |
![]() | \(90^\circ\) |
Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng
![]() | $\dfrac{3}{2}a^3$ |
![]() | $\dfrac{1}{2}a^3$ |
![]() | $2\sqrt{3}a^3$ |
![]() | $\dfrac{2\sqrt{3}}{3}a^3$ |
Cho khối hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=a$, $AD=\sqrt{2}a$, $AA'=2a$. Thể tích khối hộp đã cho bằng
![]() | $4a^3$ |
![]() | $2\sqrt{2}a^3$ |
![]() | $\sqrt{2}a^3$ |
![]() | $2a^3$ |
Cho khối hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M$ là trung điểm của $BB'$. Mặt phẳng $(MDC')$ chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh $C$ và một khối chứa đỉnh $A'$. Gọi $V_1,\,V_2$ lần lượt là thể tích hai khối đa diện chứa $C$ và $A'$. Tỉ số $\dfrac{V_1}{V_2}$ bằng
![]() | $\dfrac{V_1}{V_2}=\dfrac{7}{17}$ |
![]() | $\dfrac{V_1}{V_2}=\dfrac{7}{24}$ |
![]() | $\dfrac{V_1}{V_2}=\dfrac{17}{24}$ |
![]() | $\dfrac{V_1}{V_2}=\dfrac{7}{12}$ |
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=1$, $BC=2$, $AA'=2$ (tham khảo hình bên).
Khoảng cách giữa hai đường thẳng $AD'$ và $DC'$ bằng
![]() | $\sqrt{2}$ |
![]() | $\dfrac{\sqrt{6}}{2}$ |
![]() | $\dfrac{2\sqrt{5}}{5}$ |
![]() | $\dfrac{\sqrt{6}}{3}$ |
Cho hình lập phương $ABCD.A'B'C'D'$. Tính góc giữa 2 đường thẳng $AC$ và $B'C$.
![]() | $30^\circ$ |
![]() | $45^\circ$ |
![]() | $60^\circ$ |
![]() | $90^\circ$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy là tam giác đều cạnh $a$ và $AA'=2a$ (minh họa như hình vẽ bên).
Thể tích của khối lăng trụ đã cho bằng
![]() | $\sqrt{3}a^3$ |
![]() | $\dfrac{\sqrt{3}a^3}{6}$ |
![]() | $\dfrac{\sqrt{3}a^3}{3}$ |
![]() | $\dfrac{\sqrt{3}a^3}{2}$ |
Cho lăng trụ $ABCD.A'B'C'D'$ có đáy $ABCD$ là hình chữ nhật với $AB=\sqrt{6}$, $AD=\sqrt{3}$, $A'C=3$ và mặt phẳng $\left(AA'C'C\right)$ vuông góc với mặt đáy. Biết hai mặt phẳng $\left(AA'C'C\right)$, $\left(AA'B'B\right)$ tạo với nhau góc $\alpha$ thỏa mãn $\tan\alpha =\dfrac{3}{4}$. Thể tích khối lăng trụ $ABCD.A'B'C'D'$ bằng
![]() | $V=6$ |
![]() | $V=8$ |
![]() | $V=12$ |
![]() | $V=10$ |
Cho lăng trụ đứng $ABC.A'B'C'$ có tất cả các cạnh bằng nhau và bằng $a$ (tham khảo hình bên).
Khoảng cách từ điểm $A$ đến mặt phẳng $(BCC'B')$ bằng
![]() | $\dfrac{a\sqrt{3}}{4}$ |
![]() | $a$ |
![]() | $\dfrac{a\sqrt{3}}{2}$ |
![]() | $a\sqrt{3}$ |