Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ |
![]() | $\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là
![]() | \(2\) |
![]() | \(-2\) |
![]() | \(-4\) |
![]() | \(3\) |
Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).
![]() | \(S=3\) |
![]() | \(S=4\) |
![]() | \(S=0\) |
![]() | \(S=1\) |
Cho hàm số $f(x)=\begin{cases} x^2+3 &\text{với }x\geq1\\ 5-x &\text{với }x< 1 \end{cases}$. Tính $$I=2\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f(\sin x)\cos x\mathrm{\,d}x+3\displaystyle\int\limits_{0}^{1}f(3-2x)\mathrm{\,d}x.$$
![]() | $I=\dfrac{32}{3}$ |
![]() | $I=32$ |
![]() | $I=\dfrac{71}{6}$ |
![]() | $I=31$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
![]() | $I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$ |
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$ |
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$ |
![]() | $\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
![]() | $y'=12\cos4x-2\sin4x$ |
![]() | $y'=12\cos4x+2\sin4x$ |
![]() | $y'=-12\cos4x+2\sin4x$ |
![]() | $y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
![]() | $f'\left(x\right)=2\sin4x-3\sin3x$ |
![]() | $f'\left(x\right)=2\sin4x+3\sin3x$ |
![]() | $f'\left(x\right)=\sin4x+3\sin3x$ |
![]() | $f'\left(x\right)=2\sin2x+3\sin3x$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
![]() | $y'=6\cos3x-2\sin2x$ |
![]() | $y'=2\cos3x+\sin2x$ |
![]() | $y'=-6\cos3x+2\sin2x$ |
![]() | $y'=2\cos3x-\sin2x$ |
Tích phân \(I=\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}x\sin2x\mathrm{\,d}x\) bằng
![]() | \(\dfrac{\pi}{2}\) |
![]() | \(\dfrac{1}{4}\) |
![]() | \(1\) |
![]() | \(\dfrac{3}{4}\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
![]() | \(3\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | \(5\) |
Tính \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{3}}\sin{2x}\mathrm{\,d}x\).
![]() | \(I=-\dfrac{1}{4}\) |
![]() | \(I=0,019\) |
![]() | \(I=-\dfrac{3}{4}\) |
![]() | \(I=\dfrac{3}{4}\) |
Cho \(M\), \(N\) là các số thực, xét hàm số \(f(x)=M\sin\pi x+N\cos\pi x\) thỏa mãn \(f(1)=3\) và \(\displaystyle\int\limits_0^{\tfrac{1}{2}}f(x)\mathrm{\,d}x=-\dfrac{1}{\pi}\). Giá trị của \(f'\left(\dfrac{1}{4}\right)\) bằng
![]() | \(\dfrac{5\pi\sqrt{2}}{2}\) |
![]() | \(-\dfrac{5\pi\sqrt{2}}{2}\) |
![]() | \(-\dfrac{\pi\sqrt{2}}{2}\) |
![]() | \(\dfrac{\pi\sqrt{2}}{2}\) |
Tính tích phân \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{2}}\left(\sin{2x}+\sin x\right)\mathrm{\,d}x\).
![]() | \(5\) |
![]() | \(3\) |
![]() | \(4\) |
![]() | \(2\) |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
![]() | $\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ |
![]() | $\{k2\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
![]() | $5$ |
![]() | $4$ |
![]() | $6$ |
![]() | $7$ |
Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.
![]() | $\dfrac{7\pi}{6}+1$ |
![]() | $\dfrac{9\pi}{8}+1$ |
![]() | $\dfrac{7\pi}{6}+2$ |
![]() | $\dfrac{9\pi}{8}+2$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.
![]() | $I=20$ |
![]() | $I=8$ |
![]() | $I=18$ |
![]() | $I=16$ |
Cho $\displaystyle\displaystyle\int\limits_{4}^{9}f(x)\mathrm{d}x=10$. Tính tích phân $J=\displaystyle\displaystyle\int\limits_{0}^{1}f(5x+4)\mathrm{d}x$.
![]() | $J=2$ |
![]() | $J=10$ |
![]() | $J=50$ |
![]() | $J=4$ |
Cho $\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{4}}\cos4x\cos x\mathrm{\,d}x=\dfrac{\sqrt{2}}{a}+\dfrac{b}{c}$ với $a,\,b,\,c$ là các số nguyên, $c< 0$ và $\dfrac{b}{c}$ tối giản. Tổng $a+b+c$ bằng
![]() | $-77$ |
![]() | $-17$ |
![]() | $103$ |
![]() | $43$ |