Trong không gian $Oxyz$, cho đường thẳng $(d)\colon\begin{cases} x=1-t\\ y=-2+2t\\ z=1+t \end{cases}$. Vectơ nào là vectơ chỉ phương của $d$?
$\overrightarrow{u}=(-1;-2;1)$ | |
$\overrightarrow{u}=(1;2;1)$ | |
$\overrightarrow{u}=(1;-2;1)$ | |
$\overrightarrow{u}=(-1;2;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=2+t\\ y=1-2t\\ z=-1+3t \end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u_1}=(2;1;-1)$ | |
$\overrightarrow{u_2}=(1;2;3)$ | |
$\overrightarrow{u_3}=(1;-2;3)$ | |
$\overrightarrow{u_4}=(2;1;1)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=1-t\\ y=-2+2t\\ z=1+t\end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?
$\overrightarrow{u}=\left(1;-2;1\right)$ | |
$\overrightarrow{u}=\left(1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;2;1\right)$ | |
$\overrightarrow{u}=\left(-1;-2;1\right)$ |
Trong không gian $Oxyz$, phương trình tham số của đường thẳng qua điểm $A(2;-1;1)$ và có vectơ chỉ phương $\overrightarrow{u}=(1;-2;3)$ là
$\begin{cases}x=1+2t\\ y=-2-t\\ z=3+t\end{cases} (t\in\mathbb{R})$ | |
$\begin{cases}x=2+t\\ y=-1+2t\\ z=1+3t\end{cases} (t\in\mathbb{R})$ | |
$\begin{cases}x=2+t\\ y=-1-2t\\ z=1+3t\end{cases} (t\in\mathbb{R})$ | |
$\begin{cases}x=1-2t\\ y=-2+t\\ z=3-t\end{cases} (t\in\mathbb{R})$ |
Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta\colon\begin{cases}x=2+t\\y=3-t\\z=1\end{cases}\). Tìm tọa độ một vectơ chỉ phương của \(\Delta\).
\(\overrightarrow{u}=(1;-1;0)\) | |
\(\overrightarrow{u}=(1;-1;1)\) | |
\(\overrightarrow{u}=(2;3;1)\) | |
\(\overrightarrow{u}=(2;3;0)\) |
Phương trình đường thẳng \(\Delta\) đi qua điểm \(A(3;2;1)\) và song song với đường thẳng \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z+3}{1}\) là
\(\begin{cases}x=3-2t\\ y=2-4t\\ z=1-t\end{cases}\) | |
\(\begin{cases}x=2+3t\\ y=4+2t\\ z=1+t\end{cases}\) | |
\(\begin{cases}x=2t\\ y=4t\\ z=3+t\end{cases}\) | |
\(\begin{cases}x=3+2t\\ y=2-4t\\ z=1+t\end{cases}\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).
\(a+b=1\) | |
\(a+b=-1\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Trong không gian \(Oxyz\), vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \(d\colon\begin{cases}x=1+t\\ y=4\\ z=3-2t\end{cases}\)?
\(\vec{u}=(1;4;3)\) | |
\(\vec{u}=(1;4;-2)\) | |
\(\vec{u}=(1;0;-2)\) | |
\(\vec{u}=(1;0;2)\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là
$\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$ |
Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t \\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
$(1;2;3)$ | |
$(2;2;3)$ | |
$(1;2;-3)$ | |
$(2;-2;-3)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, cho điểm $M(3;2;-1)$ và mặt phẳng $(P)\colon x+z-2=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\begin{cases}x=3+t\\ y=2\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=2t\\ z=1-t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=1+2t\\ z=-t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=2+t\\ z=-1\end{cases}$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;-1;-1)$ và $N(5;5;1)$. Đường thẳng $MN$ có phương trình là
$\begin{cases}x=5+2t\\ y=5+3t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=5+t\\ y=5+2t\\ z=1+3t\end{cases}$ | |
$\begin{cases}x=1+2t\\ y=-1+3t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=1+2t\\ y=-1+t\\ z=-1+3t\end{cases}$ |
Trong không gian $Oxyz$, cho đường thẳng $d$ đi qua điểm $M(3;-1;4)$ và có một vectơ chỉ phương $\overrightarrow{u}=(-2;4;5)$. Phương trình của $d$ là
$\begin{cases}x=-2+3t\\ y=4-t\\ z=5+4t\end{cases}$ | |
$\begin{cases}x=3+2t\\ y=-1+4t\\ z=4+5t\end{cases}$ | |
$\begin{cases}x=3-2t\\ y=1+4t\\ z=4+5t\end{cases}$ | |
$\begin{cases}x=3-2t\\ y=-1+4t\\ z=4+5t\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $M\left(1;-2;0\right)$ và mặt phẳng $\left(\alpha\right)\colon x+2y-2z+3=0$. Đường thẳng đi qua điểm $M$ và vuông góc với $\left(\alpha\right)$ có phương trình tham số là
$\begin{cases}x=1+t\\ y=2+2t\\ z=-2t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=-2+2t\\ z=2t\end{cases}$ | |
$\begin{cases}x=1-t\\ y=-2-2t\\ z=2t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2-2t\\ z=-2\end{cases}$ |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |
Trong không gian $Oxyz$, đường thẳng đi qua hai điểm $A(3;1;-6)$ và $B(5;3;-2)$ có phương trình tham số là
$\begin{cases}x=5+t\\ y=3+t\\ z=-2+2t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=1+t\\ z=-6-2t\end{cases}$ | |
$\begin{cases}x=6+2t\\ y=4+2t\\ z=-1+4t\end{cases}$ | |
$\begin{cases}x=5+2t\\ y=3+2t\\ z=-2-4t\end{cases}$ |
Trong không gian $Oxyz$, cho đường thẳng $d$ có phương trình $\begin{cases} x=2+t\\ y=3-t\\ z=-2+t \end{cases}$ ($t\in\mathbb{R}$). Hỏi đường thẳng $d$ đi qua điểm nào sau đây?
$C(-2;-3;2)$ | |
$B(2;3;-2)$ | |
$D(2;3;2)$ | |
$A(1;-1;1)$ |
Trong không gian $Oxyz$, đường thẳng $d\colon\begin{cases}x=1+2t\\ y=2-2t\\ z=-3-3t\end{cases}$ đi qua điểm nào dưới đây?
Điểm $Q(2;2;3)$ | |
Điểm $N(2;-2;-3)$ | |
Điểm $M(1;2;-3)$ | |
Điểm $P(1;2;3)$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ | |
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |