Cho số phức \(z=6+7i\). Điểm \(M\) biểu diễn cho số phức \(\overline{z}\) trên mặt phẳng \(Oxy\) là
![]() | \(M(-6;-7)\) |
![]() | \(M(6;-7)\) |
![]() | \(M(6;7i)\) |
![]() | \(M(6;7)\) |
Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là
![]() | $(3;7)$ |
![]() | $(-3;0)$ |
![]() | $(3;0)$ |
![]() | $(-3;7)$ |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
![]() | $\left(-1;-\dfrac{2}{3}\right)$ |
![]() | $\left(-1;\dfrac{2}{3}\right)$ |
![]() | $\left(1;-\dfrac{2}{3}\right)$ |
![]() | $\left(1;\dfrac{2}{3}\right)$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
![]() | $P(3;-12)$ |
![]() | $Q(3;12)$ |
![]() | $M(14;-5)$ |
![]() | $N(-3;12)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2-7i$ có tọa độ là
![]() | $(2;7)$ |
![]() | $(-2;7)$ |
![]() | $(2;-7)$ |
![]() | $(-7;2)$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
![]() | $\left(5;1\right)$ |
![]() | $\left(-1;-5\right)$ |
![]() | $\left(1;5\right)$ |
![]() | $\left(-5;-1\right)$ |
Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
![]() | $M$ |
![]() | $Q$ |
![]() | $P$ |
![]() | $N$ |
Gọi $M, N$ lần lượt là điểm biểu diễn hình học các số phức $z=4+i$ và $w=2+3 i$. Tọa độ trung điểm $I$ của đoạn thẳng $MN$ là
![]() | $(2;-2)$ |
![]() | $(-2;2)$ |
![]() | $(3;2)$ |
![]() | $\left(\dfrac{3}{2};\dfrac{7}{2}\right)$ |
Tìm tọa độ của điểm biểu diễn số phức $z=\dfrac{3+4i}{1-i}$ trên mặt phẳng tọa độ.
![]() | $Q\left(\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
![]() | $N\left(\dfrac{1}{2};\dfrac{7}{2}\right)$ |
![]() | $P\left(-\dfrac{1}{2};\dfrac{7}{2}\right)$ |
![]() | $M\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
Cho hai số phức $z_1=1-2i$ và $z_2=3+4i$. Tìm điểm $M$ biểu diễn số phức $z_1\cdot z_2$ trên mặt phẳng tọa độ.
![]() | $M(-2;11)$ |
![]() | $M(11;2)$ |
![]() | $M(11;-2)$ |
![]() | $M(-2;-11)$ |
Trong mặt phẳng $Oxy$, điểm biểu diễn số phức $z=2-i$ có tọa độ là
![]() | $(2;-1)$ |
![]() | $(-2;1)$ |
![]() | $(2;1)$ |
![]() | $(-2;-1)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z=-1+2i\) là điểm nào dưới đây?
![]() | \(Q\left(1;2\right)\) |
![]() | \(P\left(-1;2\right)\) |
![]() | \(N\left(1;-2\right)\) |
![]() | \(M\left(-1;-2\right)\) |
Trên mặt phẳng tọa độ, tìm tọa độ của điểm \(M\) biểu diễn số phức \(z=5-i\).
![]() | \(M(5;0)\) |
![]() | \(M(5;-1)\) |
![]() | \(M(0;-5)\) |
![]() | \(M(5;1)\) |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
![]() | \(150^\circ\) |
![]() | \(90^\circ\) |
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
Cho hai số phức \(z=3-5\mathrm{i}\) và \(w=-1+2\mathrm{i}\). Điểm biểu diễn số phức \(\varphi=\overline{z}-w\cdot z\) trong mặt phẳng \(Oxy\) có tọa độ là
![]() | \((-4;-6)\) |
![]() | \((4;6)\) |
![]() | \((4;-6)\) |
![]() | \((-6;-4)\) |
Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).
![]() | Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\) |
![]() | Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\) |
![]() | Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\) |
![]() | Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\) |
Gọi \(M\) và \(M'\) lần lượt là các điểm biểu diễn của số phức \(z\) và \(\overline{z}\). Tìm mệnh đề đúng.
![]() | \(M,\,M'\) đối xứng nhau qua trục hoành |
![]() | \(M,\,M'\) đối xứng nhau qua trục tung |
![]() | \(M,\,M'\) đối xứng nhau qua gốc tọa độ |
![]() | Ba điểm \(O,\,M,\,M'\) thẳng hàng |
Cho số phức \(z\) có điểm biểu diễn trên mặt phẳng \(Oxy\) là điểm \(M(3;-5)\). Xác định số phức liên hợp \(\overline{z}\) của \(z\).
![]() | \(\overline{z}=-5+3\mathrm{i}\) |
![]() | \(\overline{z}=5+3\mathrm{i}\) |
![]() | \(\overline{z}=3+5\mathrm{i}\) |
![]() | \(\overline{z}=3-5\mathrm{i}\) |
Điểm nào sau đây biểu diễn số phức \(z\) trên mặt phẳng tọa độ, biết rằng \(\overline{z}=2-4\mathrm{i}\)?
![]() | \(M(2;4)\) |
![]() | \(N(-4;2)\) |
![]() | \(P(2;-4)\) |
![]() | \(Q(4;2)\) |
Điểm nào sau đây biểu diễn số phức \(\overline{z}\) trên mặt phẳng tọa độ, biết rằng \(z=4\mathrm{i}\)?
![]() | \(M(0;4)\) |
![]() | \(N(-4;0)\) |
![]() | \(P(-4;0)\) |
![]() | \(Q(0;-4)\) |