Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian \(Oxyz\), hình chiếu của điểm \(M(-1;0;3)\) theo phương vectơ \(\vec{v}=(1;-2;1)\) trên mặt phẳng \((P)\colon x-y+z+2=0\) có tọa độ là
\((2;-2;-2)\) | |
\((-1;0;1)\) | |
\((-2;2;2)\) | |
\((1;0;-1)\) |
Trong không gian \(Oxyz\), tọa độ hình chiếu vuông góc của điểm \(A(3;2;-1)\) lên mặt phẳng \((\alpha)\colon x+y+z=0\) là
\((-2;1;1)\) | |
\(\left(\dfrac{5}{3};\dfrac{2}{3};-\dfrac{7}{3}\right)\) | |
\((1;1;-2)\) | |
\(\left(\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{4}\right)\) |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x-y+2z-6=0$. Điểm nào sau đây thuộc mặt phẳng $(P)$?
$M(1;-1;1)$ | |
$I(2;0;-2)$ | |
$N(1;0;-2)$ | |
$P(3;0;0)$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
$(4;-1;6)$ | |
$(4;6;1)$ | |
$(-4;6;-1)$ | |
$(4;1;6)$ |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng
\(-2\) | |
\(13\) | |
\(-5\) | |
\(12\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \((P)\colon4x-3y+z-13=0\) và điểm \(M(5;-5;4)\). Tìm tọa độ điểm \(M'\) đối xứng với \(M\) qua mặt phẳng \((P)\).
\(M'(7;-9;10)\) | |
\(M'(1;-2;3)\) | |
\(M'(5;-5;4)\) | |
\(M'(-3;1;2)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(-1;-1;0)\) và \(B(3;1;-1)\). Điểm \(M\in Oy\) và cách đều hai điểm \(A,\,B\) có tọa độ là
\(M\left(0;-\dfrac{9}{4};0\right)\) | |
\(M\left(0;\dfrac{9}{2};0\right)\) | |
\(M\left(0;-\dfrac{9}{2};0\right)\) | |
\(M\left(0;\dfrac{9}{4};0\right)\) |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?
$\overrightarrow{n_1}=(2;1;-1)$ | |
$\overrightarrow{n_3}=(1;-1;3)$ | |
$\overrightarrow{n_4}=(2;-1;3)$ | |
$\overrightarrow{n_2}=(2;1;3)$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;3)$. Hình chiếu vuông góc của điểm $A$ trên mặt phẳng $(Oxy)$ là điểm
$M(0;0;3)$ | |
$N(1;2;0)$ | |
$Q(0;2;0)$ | |
$P(1;0;0)$ |
Trong không gian $Oxyz$, mặt phẳng $(P)\colon x+y+z+1=0$ có một vectơ pháp tuyến là
$\overrightarrow{n_1}=(-1;1;1)$ | |
$\overrightarrow{n_4}=(1;1;-1)$ | |
$\overrightarrow{n_3}=(1;1;1)$ | |
$\overrightarrow{n_2}=(1;-1;1)$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là
$2y+z=0$ | |
$2y-z=0$ | |
$y+z=0$ | |
$y-z=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon3x-y+2z-1=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của $(P)$?
$\overrightarrow{n_1}=(-3;1;2)$ | |
$\overrightarrow{n_2}=(3;-1;2)$ | |
$\overrightarrow{n_3}=(3;1;2)$ | |
$\overrightarrow{n_4}=(3;1;-2)$ |
Trong không gian $Oxyz$, mặt phẳng $\left(P\right)\colon3x-z+2=0$ có một vectơ pháp tuyến là
$\overrightarrow{n}=\left(3;0;-1\right)$ | |
$\overrightarrow{n}=\left(3;-1;2\right)$ | |
$\overrightarrow{n}=\left(-3;0;-1\right)$ | |
$\overrightarrow{n}=\left(3;-1;0\right)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x-y+2z=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là
$\overrightarrow{n}=(-1;-1;2)$ | |
$\overrightarrow{m}=(1;1;0)$ | |
$\overrightarrow{p}=(2;1;-1)$ | |
$\overrightarrow{q}=(1;-1;2)$ |
Trong không gian $Oxyz$, gọi $M(a;b;c)$ là giao điểm của đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-3}{-1}=\dfrac{z-2}{1}$ và mặt phẳng $(P)\colon2x+3y-4z+4=0$. Tính $T=a+b+c$.
$T=\dfrac{3}{2}$ | |
$T=6$ | |
$T=4$ | |
$T=-\dfrac{5}{2}$ |
Trong không gian $Oxyz$, cho phương trình mặt phẳng $(P)\colon2x-z+2=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là
$(2;-1;0)$ | |
$(2;-1;2)$ | |
$(2;0;-1)$ | |
$(0;-1;2)$ |
Trong không gian $Oxyz$, mặt phẳng $(P)\colon2x-3y+4z-1=0$ có một vectơ pháp tuyến là
$\overrightarrow{n_4}=(-1;2;-3)$ | |
$\overrightarrow{n_3}=(-3;4;-1)$ | |
$\overrightarrow{n_2}=(2;-3;4)$ | |
$\overrightarrow{n_1}=(2;3;4)$ |
Trong không gian $Oxyz$, cho mặt phẳng $\left(P\right)\colon x+2y-3z+3=0$. Trong các véctơ sau véctơ nào là véctơ pháp tuyến của $\left(P\right)$?
$\overrightarrow{n}=\left(1;-2;3\right)$ | |
$\overrightarrow{n}=\left(1;2;-3\right)$ | |
$\overrightarrow{n}=\left(1;2;3\right)$ | |
$\overrightarrow{n}=\left(-1;2;3\right)$ |