Ngân hàng bài tập

Bài tập tương tự

S

Cho số phức $z$ thỏa điều kiện $|z|=10$ và $w=(6+8i)\cdot\overline{z}+(1-2i)^2$. Tập hợp điểm biểu diễn cho số phức $w$ là đường tròn có tâm là

$I(-3;-4)$
$I(3;4)$
$I(6;8)$
$I(1;-2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).

Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\)
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\)
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z+2-\mathrm{i}|=3\). Tìm tập hợp các điểm trong mặt phẳng \(Oxy\) biểu diễn số phức \(w=1+\overline{z}\).

Đường tròn tâm \(I(-2;1)\) bán kính \(R=3\)
Đường tròn tâm \(I(2;-1)\) bán kính \(R=3\)
Đường tròn tâm \(I(-1;-1)\) bán kính \(R=9\)
Đường tròn tâm \(I(-1;-1)\) bán kính \(R=3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.

$I(-3;-5)$, $R=\sqrt{5}$
$I(3;-5)$, $R=\sqrt{10}$
$I(-3;5)$, $R=\sqrt{10}$
$I(3;5)$, $R=10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập hợp các số phức $z$ thỏa mãn $|z+1-2i|=3$ là đường tròn có tâm

$I(-1;2)$
$I(-1;-2)$
$I(1;-2)$
$I(1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm $A$ trong hình vẽ bên biểu diễn cho số phức $z$. Mệnh đề nào sau đây đúng?

Phần thực là $-3$, phần ảo là $2$
Phần thực là $-3$, phần ảo là $2i$
Phần thực là $3$, phần ảo là $-2i$
Phần thực là $3$, phần ảo là $2$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, cho $M(2;3)$ là điểm biểu diễn của số phức $z$. Phần thực của $z$ bằng

$2$
$3$
$-3$
$-2$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức $z$ thỏa mãn $|z|=\sqrt{7}$.

Đường tròn tâm $O(0;0)$, bán kính $R=\dfrac{7}{2}$
Đường tròn tâm $O(0;0)$, bán kính $R=7$
Đường tròn tâm $O(0;0)$, bán kính $R=49$
Đường tròn tâm $O(0;0)$, bán kính $R=\sqrt{7}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong mặt phẳng $Oxy$, biết rằng tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-2+4i\right|=5$ là một đường tròn. Tọa độ tâm của đường tròn đó là

$(-1;2)$
$(-2;4)$
$(1;-2)$
$(2;-4)$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong mặt phẳng $Oxy$, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\left|z-(2-3i)\right|\leq2$.

Một đường thẳng
Một đường tròn
Một hình tròn
Một đường elip
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?

  1. Môđun của $z$ là một số thực dương.
  2. $z^2=|z|^2$.
  3. $\left|\overline{z}\right|=\left|iz\right|=|z|$.
  4. Điểm $M(-a;b)$ biểu diễn số phức $\overline{z}$.
$4$
$1$
$3$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, biết \(M\left(-3;1\right)\) là điểm biểu diễn số phức \(z\). Phần thực của \(z\) bằng

\(1\)
\(-3\)
\(-1\)
\(3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z+i|=1\). Biết rằng tập hợp điểm biểu diễn số phức \(w=z-2i\) là một đường tròn. Tâm của đường tròn đó là

\(I(0;-1)\)
\(I(0;-3)\)
\(I(0;3)\)
\(I(0;1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm \(A\) trong hình vẽ trên biểu diễn cho số phức \(z\). Mệnh đề nào sau đây đúng.

Phần thực là \(-3\), phần ảo là \(2\)
Phần thực là \(-3\), phần ảo là \(2i\)
Phần thực là \(3\), phần ảo là \(-2i\)
Phần thực là \(3\), phần ảo là \(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Điểm biểu diễn của các số phức \(z=7+bi\) với \(b\in\mathbb{R}\) nằm trên đường thẳng có phương trình là

\(y=x+7\)
\(y=7\)
\(x=7\)
\(y=x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Điểm \(M\) trong hình vẽ bên biểu diễn số phức \(z\). Tìm  phần thực và phần ảo của \(z\).

\(-4\) và \(3\)
\(3\) và \(-4\mathrm{i}\)
\(3\) và \(-4\)
\(-4\) và \(3\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là

$(3;7)$
$(-3;0)$
$(3;0)$
$(-3;7)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2+3i$ có tọa độ là

$M(-2;3)$
$M(3;2)$
$M(2;-3)$
$M(2;3)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là

$\left(-1;-\dfrac{2}{3}\right)$
$\left(-1;\dfrac{2}{3}\right)$
$\left(1;-\dfrac{2}{3}\right)$
$\left(1;\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.

Phần ảo của số phức $(1+i)z$ bằng

$7$
$-7$
$-1$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự