Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là
\(x+5z-18\) | |
\(x+5z=0\) | |
\(3x+4z=0\) | |
\(x+5y=0\) |
Trong không gian $Oxyz$, gọi $\alpha$ là góc giữa hai mặt phẳng $(P)\colon x-\sqrt{3}y+2z+1=0$ và mặt phẳng $(Oxy)$. Khẳng định nào sau đây đúng?
$\alpha=45^{\circ}$ | |
$\alpha=30^{\circ}$ | |
$\alpha=60^{\circ}$ | |
$\alpha=90^{\circ}$ |
Trong không gian $Oxyz$, phương trình mặt phẳng chứa trục $Oy$ và qua điểm $A(1;4;-3)$ là
$3x+z=0$ | |
$3x+y=0$ | |
$x+3z=0$ | |
$3x-z=0$ |
Trong không gian $Oxyz$ cho điểm $P(2;-3;1)$. Gọi $A$, $B$, $C$ lần lượt là hình chiếu vuông góc của điểm $P$ trên ba trục tọa độ $Ox$, $Oy$ và $Oz$. Phương trình mặt phẳng đi qua ba điểm $A$, $B$, $C$ là
$\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{1}=1$ | |
$2x-3y+z=1$ | |
$3x-2y+6z=1$ | |
$3x-2y+6z-6=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)$ chứa điểm $H(1;2;2)$ và cắt tia $Ox$, $Oy$, $Oz$ lần lượt tại $A,\,B,\,C$ sao cho $H$ là trực tâm của tam giác $ABC$. Phương trình mặt phẳng $(P)$ là
$2x+y+z-2=0$ | |
$x+2y-2z-9=0$ | |
$x+2y+2z-9=0$ | |
$2x+y+z-6=0$ |
Trong không gian $Oxyz$, cho điểm $A(2;-1;1)$. Phương trình mặt phẳng $\left(\alpha\right)$ qua các hình chiếu của điểm $A$ trên các trục tọa độ là
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=-1$ | |
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=0$ | |
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=1$ | |
$\dfrac{x}{2}+\dfrac{y}{1}+\dfrac{z}{1}=1$ |
Trong không gian \(Oxyz\), cho bốn điểm \(A(2;0;0)\), \(B(0;4;0)\), \(C(0;0;6)\) và \(D(2;4;6)\). Gọi \((P)\) là mặt phẳng song song với mặt phẳng \((ABC)\) đồng thời cách đều điểm \(D\) và mặt phẳng \((ABC)\). Phương trình của \((P)\) là
\(6x+3y+2z-24=0\) | |
\(6x+3y+2z-12=0\) | |
\(6x+3y+2z=0\) | |
\(6x+3y+2z-36=0\) |
Trong không gian \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;-2;-2)\) lên các trục tọa độ \(Ox,\,Oy,\,Oz\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\) bằng
\(\dfrac{\sqrt{6}}{3}\) | |
\(\dfrac{2\sqrt{3}}{3}\) | |
\(\dfrac{\sqrt{6}}{6}\) | |
\(\dfrac{\sqrt{3}}{2}\) |
Trong không gian \(Oxyz\), cho điểm \(G(2;1;1)\). Gọi \((P)\) là mặt phẳng đi qua điểm \(G\) và cắt các trục \(Ox,\,Oy,\,Oz\) lần lượt tại \(A,\,B,\,C\) sao cho \(G\) là trọng tâm tam giác \(ABC\). Phương trình mặt phẳng \((P)\) là
\(x+2y+2z-12=0\) | |
\(x+2y+2z+6=0\) | |
\(2x+y+z-6=0\) | |
\(x+2y+2z-6=0\) |
Trong không \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;2;3)\) lên các trục tọa độ. Mặt phẳng \((ABC)\) có phương trình là
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1\) | |
\(\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1\) | |
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\) | |
\(\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=0\) |
Trong không gian \(Oxyz\), gọi \((P)\) là mặt phẳng qua \(M(2;1;9)\) và cắt tia \(Ox,\,Oy,\,Oz\) lần lượt tại \(A,\,B,\,C\) sao cho tam giác \(ABC\) đều. Điểm nào dưới đây thuộc \((P)\)?
\(E(-1;5;8)\) | |
\(F(3;2;-7)\) | |
\(G(1;-7;-6)\) | |
\(H(5;5;5)\) |
Trong không gian \(Oxyz\), cho điểm \(G(1;2;3)\). Gọi \((P)\colon px+qy+rz+1=0\) (\(p,\,q,\,r\in\Bbb{R}\)) là mặt phẳng qua \(G\) và cắt các trục \(Ox,\,Oy,\,Oz\) tại \(A,\,B,\,C\) sao cho \(G\) là trọng tâm của tam giác \(ABC\). Tính \(T=p+q+r\).
\(T=-\dfrac{11}{18}\) | |
\(T=\dfrac{11}{18}\) | |
\(T=18\) | |
\(T=-18\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\) chứa điểm \(H(1;2;2)\) và cắt các trục \(Ox\), \(Oy\), \(Oz\) lần lượt tại \(A,\,B,\,C\) sao cho \(H\) là trực tâm của tam giác \(ABC\). Phương trình mặt phẳng \((P)\) là
\(x+2y-2z-9=0\) | |
\(2x+y+z-6=0\) | |
\(2x+y+z-2=0\) | |
\(x+2y+2z-9=0\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng
$\dfrac{7\sqrt{55}}{55}$ | |
$\dfrac{\sqrt{55}}{55}$ | |
$0$ | |
$\dfrac{-3\sqrt{55}}{11}$ |
Trong không gian $Oxyz$, cho điểm $M(2;-1;3)$ và mặt phẳng $(P)\colon3x-2y+z+1=0$. Phương trình mặt phẳng đi qua $M$ và song song với $(P)$ là
$3x-2y+z-11=0$ | |
$2x-y+3z-14=0$ | |
$3x-2y+z+11=0$ | |
$2x-y+3z+14=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.
$3$ | |
$1$ | |
$2$ | |
$0$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;1;-1)$, $B(-1;0;4)$, $C(0;-2;-1)$. Phương trình mặt phẳng đi qua $A$ và vuông góc với $BC$ là
$x-2y-5z+5=0$ | |
$x-2y-5=0$ | |
$2x-y+5z-5=0$ | |
$x-2y-5z-5=0$ |
Trong không gian $Oxyz$, cho $I(2;1;1)$ và mặt phẳng $(P)\colon2x+y+2z+2=0$. Viết phương trình mặt phẳng qua điểm $I$ và song song với mặt phẳng $(P)$.
Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là
$2y+z=0$ | |
$2y-z=0$ | |
$y+z=0$ | |
$y-z=0$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-5}{2}$ và mặt phẳng $(P)\colon2x+y+z-3=0$. Đường thẳng $\Delta$ đi qua điểm $A(2;-1;3)$, cắt đường thẳng $d$ và tạo với mặt phẳng $(P)$ một góc $30^\circ$ có phương trình là
$\dfrac{x+2}{22}=\dfrac{y-1}{-13}=\dfrac{z+3}{8}$ | |
$\dfrac{x-2}{1}=\dfrac{y+1}{-1}=\dfrac{z-3}{2}$ | |
$\dfrac{x-2}{2}=\dfrac{y+1}{1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-2}{-11}=\dfrac{y+1}{5}=\dfrac{z-3}{2}$ |