Ngân hàng bài tập

Bài tập tương tự

A

Trong không gian $Oxyz$, gọi $M(a;b;c)$ là giao điểm của đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-3}{-1}=\dfrac{z-2}{1}$ và mặt phẳng $(P)\colon2x+3y-4z+4=0$. Tính $T=a+b+c$.

$T=\dfrac{3}{2}$
$T=6$
$T=4$
$T=-\dfrac{5}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng

$5$
$-2$
$-5$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.

$(0;3;-2)$
$(6;-7;0)$
$(3;-2;-1)$
$(-3;8;-3)$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng

\(-2\)
\(13\)
\(-5\)
\(12\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), hình chiếu của điểm \(M(-1;0;3)\) theo phương vectơ \(\vec{v}=(1;-2;1)\) trên mặt phẳng \((P)\colon x-y+z+2=0\) có tọa độ là

\((2;-2;-2)\)
\((-1;0;1)\)
\((-2;2;2)\)
\((1;0;-1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là

$(4;-1;6)$
$(4;6;1)$
$(-4;6;-1)$
$(4;1;6)$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.

\(M\left(0;0;1\right)\)
\(M\left(2;-4;-1\right)\)
\(M\left(4;0;3\right)\)
\(M\left(0;-1;0\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là

\(x+5z-18\)
\(x+5z=0\)
\(3x+4z=0\)
\(x+5y=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), tọa độ hình chiếu vuông góc của điểm \(A(3;2;-1)\) lên mặt phẳng \((\alpha)\colon x+y+z=0\) là

\((-2;1;1)\)
\(\left(\dfrac{5}{3};\dfrac{2}{3};-\dfrac{7}{3}\right)\)
\((1;1;-2)\)
\(\left(\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{4}\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y-3}{-1}=\dfrac{z-1}{1}\) cắt mặt phẳng \((P)\colon2x-3y+z-2=0\) tại điểm \(I(a;b;c)\). Khi đó \(a+b+c\) bằng

\(7\)
\(3\)
\(9\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là

$\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$
$\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$
$\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$
$\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng

$\dfrac{7\sqrt{55}}{55}$
$\dfrac{\sqrt{55}}{55}$
$0$
$\dfrac{-3\sqrt{55}}{11}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.

$\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$
$\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.

$3$
$1$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là

$\overrightarrow{u_2}=(5;-4;-3)$
$\overrightarrow{u_1}=(5;16;-13)$
$\overrightarrow{u_3}=(5;-16;-13)$
$\overrightarrow{u_2}=(5;16;13)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(3;2;-1)$ và mặt phẳng $(P)\colon x+z-2=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là

$\begin{cases}x=3+t\\ y=2\\ z=-1+t\end{cases}$
$\begin{cases}x=3+t\\ y=2t\\ z=1-t\end{cases}$
$\begin{cases}x=3+t\\ y=1+2t\\ z=-t\end{cases}$
$\begin{cases}x=3+t\\ y=2+t\\ z=-1\end{cases}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là

$2y+z=0$
$2y-z=0$
$y+z=0$
$y-z=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z-5}{2}$ và mặt phẳng $(P)\colon2x+y+z-3=0$. Đường thẳng $\Delta$ đi qua điểm $A(2;-1;3)$, cắt đường thẳng $d$ và tạo với mặt phẳng $(P)$ một góc $30^\circ$ có phương trình là

$\dfrac{x+2}{22}=\dfrac{y-1}{-13}=\dfrac{z+3}{8}$
$\dfrac{x-2}{1}=\dfrac{y+1}{-1}=\dfrac{z-3}{2}$
$\dfrac{x-2}{2}=\dfrac{y+1}{1}=\dfrac{z-3}{1}$
$\dfrac{x-2}{-11}=\dfrac{y+1}{5}=\dfrac{z-3}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là

$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình

$\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$
$\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$
$\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$
$\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$
1 lời giải Sàng Khôn
Lời giải Tương tự