Ngân hàng bài tập

Bài tập tương tự

B

Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.

$m=7$; $n=\dfrac{3}{4}$
$m=1$; $n=0$
$m=4$; $n=-3$
$m=7$; $n=-\dfrac{3}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).

\(a+b=1\)
\(a+b=-1\)
\(a+b=-2\)
\(a+b=2\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho hai mặt phẳng $(P)\colon mx+2y+nz+1=0$ và $(Q)\colon x-my+nz+2=0$ $(m,\,n\in\mathbb{R})$ cùng vuông góc với mặt phẳng $(\alpha)\colon 4x-y-6z+3=0$. Tính $m+n$.

$m+n=0$
$m+n=2$
$m+n=1$
$m+n=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?

$cd=3$
$cd=0$
$cd=12$
$cd=6$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\begin{cases} x=1+t\\ y=a-2t\\ z=bt \end{cases}$ $(t\in\mathbb{R})$ nằm trong mặt phẳng $(P)\colon x+y-z-2=0$. Tổng $a+b$ có giá trị là

$-3$
$-1$
$1$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba điểm \(A\left(2;-1;5\right)\), \(B\left(5;-5;7\right)\) và \(M\left(x;y;1\right)\). Với giá trị nào của \(x\) và \(y\) thì \(3\) điểm \(A,\,B,\,M\) thẳng hàng?

\(x=4\) và \(y=7\)
\(x=-4\) và \(y=-7\)
\(x=4\) và \(y=-7\)
\(x=-4\) và \(y=7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho vectơ \(\overrightarrow{a}=\left(1;3;4\right)\), tìm vectơ \(\overrightarrow{b}\) cùng phương với vectơ \(\overrightarrow{a}\).

\(\overrightarrow{b}=\left(-2;6;8\right)\)
\(\overrightarrow{b}=\left(-2;-6;-8\right)\)
\(\overrightarrow{b}=\left(-2;-6;8\right)\)
\(\overrightarrow{b}=\left(2;-6;-8\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\) cho ba điểm \(A(2;-1;5)\), \(B(5;-5;7)\), \(M(x;y;1)\). Với giá trị nào của \(x,\,y\) thì \(A,\,B,\,M\) thẳng hàng?

\(x=4;\,y=7\)
\(x=4;\,y=-7\)
\(x=-4;\,y=7\)
\(x=-4;\,y=-7\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?

\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\)
\(\overrightarrow{u}=\overrightarrow{v}\)
\(\overrightarrow{u}\bot\overrightarrow{v}\)
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?

Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\)
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\)
\(\vec{m}\cdot\vec{n}=-1\)
\(\vec{m}\) và \(\vec{n}\) không cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(-2;0;3)\), \(\vec{b}=(0;4;-1)\) và \(\vec{c}=\left(m-2;m^2;5\right)\). Tìm giá trị của \(m\) để \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng.

\(m=-2\) hoặc \(m=-4\)
\(m=2\) hoặc \(m=4\)
\(m=1\) hoặc \(m=6\)
\(m=2\) hoặc \(m=5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;m;2)\), \(\vec{b}=(m+1;2;1)\) và \(\vec{c}=(0;m-2;2)\). Tìm giá trị của \(m\) để \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng.

\(m=\dfrac{2}{5}\)
\(m=\dfrac{5}{2}\)
\(m=-2\)
\(m=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{u}=(2;-1;1)\), \(\vec{v}=(m;3;-1)\) và \(\vec{w}=(1;2;1)\). Tìm giá trị của \(m\) để \(\vec{u},\,\vec{v},\,\vec{w}\) đồng phẳng.

\(m=-8\)
\(m=4\)
\(m=-\dfrac{7}{3}\)
\(m=-\dfrac{8}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(3;-1;-2)\), \(\vec{b}=(1;2;m)\) và \(\vec{c}=(5;1;7)\). Tìm giá trị của \(m\) để \(\left[\vec{a},\vec{b}\right]=\vec{c}\).

\(m=-1\)
\(m=0\)
\(m=1\)
\(m=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;2;-1)\), \(\vec{b}=(3;-1;0)\), \(\vec{c}=(1;-5;2)\). Khẳng định nào sau đây là đúng?

\(\vec{a},\,\vec{b}\) cùng phương
\(\vec{a},\,\vec{b},\,\vec{c}\) không đồng phẳng
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng
\(\vec{a}\bot\vec{b}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?

\(\vec{a},\,\vec{c}\) cùng phương
\(\vec{b},\,\vec{c}\) cùng phương
\(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\)
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(3;-2;m)\) và \(\vec{b}=(2;m;-1)\). Tìm giá trị của \(m\) để \(\vec{a}\) và \(\vec{b}\) vuông góc với nhau.

\(m=2\)
\(m=1\)
\(m=-2\)
\(m=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho vectơ \(\vec{a}=(2;-2;-4)\), \(\vec{b}=(1;-1;1)\). Mệnh đề nào dưới đây sai?

\(\vec{a}+\vec{b}=(3;-3;-3)\)
\(\vec{a}\) và \(\vec{b}\) cùng phương
\(\left|\vec{b}\right|=\sqrt{3}\)
\(\vec{a}\bot\vec{b}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho các vectơ \(\vec{a}=(m;1;0)\), \(\vec{b}=(2;m-1;1)\), \(\vec{c}=(1;m+1;1)\). Tìm \(m\) để ba vectơ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) đồng phẳng.

\(m=\dfrac{3}{2}\)
\(m=-2\)
\(m=-\dfrac{1}{2}\)
\(m=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.

$m=\sqrt{6}$
$m=-6$
Không có giá trị nào của $m$
$m=\pm\sqrt{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự