Trong không gian $Oxyz$, cho mặt cầu có phương trình $x^2+y^2+z^2-2x+4y-6z+9=0$. Tọa độ tâm $I$ và bán kính $R$ của mặt cầu là
$I(-1;2;-3)$ và $R=5$ | |
$I(-1;2;-3)$ và $R=\sqrt{5}$ | |
$I(1;-2;3)$ và $R=5$ | |
$I(1;-2;3)$ và $R=\sqrt{5}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2-2x-4y-6z+1=0$. Tâm của $(S)$ có tọa độ là
$(-1;-2;-3)$ | |
$(2;4;6)$ | |
$(-2;-4;-6)$ | |
$(1;2;3)$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2+4x-8y+2z+1=0$ và mặt phẳng $(P)\colon2x+y+3z-3=0$. Biết $(P)$ cắt $(S)$ theo giao tuyến là một đường tròn, tìm tọa độ tâm $I$ và bán kính $r$ của đường tròn đó.
$I\left(\dfrac{8}{7};\dfrac{25}{7};-\dfrac{16}{7}\right)$ và $r=\dfrac{2\sqrt{854}}{3}$ | |
$I\left(\dfrac{8}{7};-\dfrac{31}{7};-\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{5}$ | |
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{7}$ | |
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{3}$ |
Trong không gian \(Oxyz\), mặt cầu \((S)\colon x^2+y^2+z^2+4x-2y+2z-3=0\) có tâm và bán kính là
\(I(2;-1;1),\,R=9\) | |
\(I(2;-1;1),\,R=3\) | |
\(I(-2;1;-1),\,R=3\) | |
\(I(-2;1;-1),\,R=9\) |
Trong không gian $Oxyz$, tâm $I$ của mặt cầu $(S)\colon(x+2)^2+(y-1)^2+z^2=4$ có tọa độ là
$I(-2;1;0)$ | |
$I(2;-1;0)$ | |
$I(-2;1;1)$ | |
$I(-2;-1;0)$ |
Trong không giạn $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z-2)^2=9$. Tọa độ tâm $I$ của mặt cầu $(S)$ là
$(1;-2;-2)$ | |
$(1;-2;2)$ | |
$(-1;-2;2)$ | |
$(-1;2;-2)$ |
Trong không gian $Oxyz$, cho $(S)\colon x^2+y^2+z^2-4x-2y+10z-14=0$. Mặt phẳng $(P)\colon-x+4z+5=0$ cắt mặt cầu $(S)$ theo một đường tròn $(\mathscr{C})$. Tọa độ tâm $H$ của $(\mathscr{C})$ là
$H(1;1;-1)$ | |
$H(-3;1;-2)$ | |
$H(9;1;1)$ | |
$H(-7;1;-3)$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2+2x+4y-6z-1=0$. Tâm của mặt cầu $(S)$ có tọa độ là
$(-1;-2;3)$ | |
$(1;2;-3)$ | |
$(2;4;-6)$ | |
$(-2;-4;6)$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+6z-2=0$ có bán kính bằng
$\sqrt{11}$ | |
$3\sqrt{6}$ | |
$2\sqrt{3}$ | |
$\sqrt{15}$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-2x+2y-6z+2=0$ cắt mặt phẳng $(Oyz)$ theo giao tuyến là một đường tròn có bán kính bằng
$3$ | |
$1$ | |
$2\sqrt{2}$ | |
$\sqrt{2}$ |
Trong không gian $Oxyz$, mặt cầu $(S)\colon x^2+y^2+z^2-4x+2y-6z+4=0$ có bán kính bằng
$\sqrt{53}$ | |
$4\sqrt{2}$ | |
$3\sqrt{7}$ | |
$\sqrt{10}$ |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\) có phương trình \(x^2+y^2+z^2-2x-4y+6z+10=0\). Bán kính của mặt cầu \(\left(S\right)\) bằng
\(R=4\) | |
\(R=1\) | |
\(R=2\) | |
\(R=3\sqrt{2}\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y+2\right)^2+\left(z+1\right)^2=16\). Tìm tọa độ tâm \(I\) của mặt cầu \(\left(S\right)\).
\(I=\left(1;-2;-1\right)\) | |
\(I=\left(-1;-2;-1\right)\) | |
\(I=\left(1;-2;1\right)\) | |
\(I=\left(-1;-2;-1\right)\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y+4\right)^2+\left(z-1\right)^2=9\). Tâm của \(\left(S\right)\) có tọa độ là
\(\left(-2;4;-1\right)\) | |
\(\left(2;-4;1\right)\) | |
\(\left(2;4;1\right)\) | |
\(\left(-2;-4;-1\right)\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon(x-7)^2+(y+3)^2+z^2=16\). Tìm tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu \((S)\).
\(I(-7;3;0)\) và \(R=4\) | |
\(I(7;-3;0)\) và \(R=4\) | |
\(I(-7;3;0)\) và \(R=16\) | |
\(I(7;-3;0)\) và \(R=16\) |
Trong không gian tọa độ \(Oxyz\), cho điểm \(A\left(1;-2;3\right)\). Gọi \(\left(S\right)\) là mặt cầu chứa \(A\) có tâm \(I\) thuộc tia \(Ox\) và bán kính bằng \(7\). Phương trình mặt cầu \(\left(S\right)\) là
\(\left(x-7\right)^2+y^2+z^2=49\) | |
\(\left(x+7\right)^2+y^2+z^2=49\) | |
\(\left(x+5\right)^2+y^2+z^2=49\) | |
\(\left(x-3\right)^2+y^2+z^2=49\) |
Cho mặt cầu \((S)\colon\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=12\). Trong các mệnh đề sau, mệnh đề nào sai?
\((S)\) đi qua điểm \(M(1;0;1)\) | |
\((S)\) đi qua điểm \(N(-3;4;2)\) | |
\((S)\) có tâm \(I(-1;2;3)\) | |
\((S)\) có bán kính \(R=2\sqrt{3}\) |
Trong không gian \(Oxyz\), tọa độ tâm \(I\), bán kính \(R\) của mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-20=0\) là
\(I\left(1;2;0\right),\,R=5\) | |
\(I\left(1;-2\right),\,R=5\) | |
\(I\left(-1;2;0\right),\,R=5\) | |
\(I\left(1;-2;0\right),\,R=5\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2+6x-4y+2z-2=0\). Tọa độ tâm \(I\) và bán kính \(R\) của \((S)\) là
\(I(-3;2;-1)\) và \(R=4\) | |
\(I(-3;2;-1)\) và \(R=16\) | |
\(I(3;-2;1)\) và \(R=4\) | |
\(I(3;-2;1)\) và \(R=16\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=16\). Tâm của \(\left(S\right)\) có tọa độ là
\(\left(-1;-2;-3\right)\) | |
\(\left(1;2;3\right)\) | |
\(\left(-1;2;-3\right)\) | |
\(\left(1;-2;3\right)\) |