Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2+z+6=0$. Khi đó $z_1+z_2+z_1z_2$ bằng
![]() | $7$ |
![]() | $5$ |
![]() | $-7$ |
![]() | $-5$ |
Biết phương trình $z^2+mz+n=0$ ($m,\,n\in\mathbb{R}$) có một nghiệm là $1-3i$. Tính $n+3m$.
![]() | $4$ |
![]() | $3$ |
![]() | $16$ |
![]() | $6$ |
Gọi $z_1,\,z_2$ là hai nghiệm phân biệt của phương trình $z^2+3z+4=0$ trên tập số phức. Tính giá trị của biểu thức $P=\left|z_1\right|+\left|z_2\right|$.
![]() | $P=4\sqrt{2}$ |
![]() | $P=2\sqrt{2}$ |
![]() | $P=4$ |
![]() | $P=2$ |
Ký hiệu $z$, $w$ là hai nghiệm phức của phương trình $2x^2-4x+9=0$. Giá trị của $P=\dfrac{1}{z}+\dfrac{1}{w}$ là
![]() | $-\dfrac{4}{9}$ |
![]() | $-\dfrac{9}{4}$ |
![]() | $\dfrac{4}{9}$ |
![]() | $\dfrac{9}{8}$ |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2+2z+3=0$. Tính $P=2\left|z_1\right|+5\left|z_2\right|$.
![]() | $P=\sqrt{3}$ |
![]() | $P=5\sqrt{3}$ |
![]() | $P=3\sqrt{3}$ |
![]() | $P=7\sqrt{3}$ |
Gọi $z_1,\,z_2$ là các nghiệm phức của phương trình $z^2+2z+5=0$. Tính $M=\left|z_1\right|^2+\left|z_2\right|^2$.
![]() | $M=4\sqrt{5}$ |
![]() | $M=2\sqrt{34}$ |
![]() | $M=12$ |
![]() | $M=10$ |
Xét các số phức $z$ thỏa mãn điều kiện $\left|\dfrac{-2-3i}{3-2i}z+1\right|=1$. Gọi $m, M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức $P=|z|$. Tính $S=2023-3M+2m$.
![]() | $S=2021$ |
![]() | $S=2017$ |
![]() | $S=2019$ |
![]() | $S=2023$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z-4=(1+i)|z|-(4+3z)i$. Giá trị của biểu thức $P=a-3b$ bằng
![]() | $P=-2$ |
![]() | $P=6$ |
![]() | $P=2$ |
![]() | $P=-6$ |
Gọi $z_1,\,z_2$ là hai nghiệm của phương trình $z^2-6z+10=0$. Giá trị của $z_1^2+z_2^2$ bằng
![]() | $56$ |
![]() | $26$ |
![]() | $20$ |
![]() | $16$ |
Tên tập hợp số phức, xét phương trình $z^2-2(m+1)z+m^2=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có hai nghiệm phân biệt $z_1$, $z_2$ thỏa mãn $\big|z_1\big|+\big|z_2\big|=2$?
![]() | $1$ |
![]() | $4$ |
![]() | $2$ |
![]() | $3$ |
Xét các số phức $z$ thỏa mãn $\big|z^2-3-4i\big|=2|z|$. Gọi $M$ và $m$ lần lượt là giá trị lớn nhất vả giá trị nhỏ nhất của $|z|$. Giá trị của $M^2+m^2$ bằng
![]() | $28$ |
![]() | $18+4\sqrt{6}$ |
![]() | $14$ |
![]() | $11+4\sqrt{6}$ |
Trên tập hợp các số phức, xét phương trình $z^2-2(m+1)z+m^2=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có nghiệm $z_0$ thỏa mãn $\left|z_0\right|=7$?
![]() | $2$ |
![]() | $3$ |
![]() | $1$ |
![]() | $4$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
![]() | $\left(5;1\right)$ |
![]() | $\left(-1;-5\right)$ |
![]() | $\left(1;5\right)$ |
![]() | $\left(-5;-1\right)$ |
Tất cả các nghiệm phức của phương trình $z^2-2z+5=0$ là
![]() | $1$ |
![]() | $2i,\,-2i$ |
![]() | $1+2i,\,1-2i$ |
![]() | $2+i,\,2-i$ |
Cho số phức $z=x+iy$ (với $x,\,y\in\mathbb{R}$) thỏa mãn $2z-5i\cdot\overline{z}=-14-7i$. Tính $x+y$.
![]() | $1$ |
![]() | $7$ |
![]() | $-1$ |
![]() | $5$ |
Tất cả các nghiệm phức của phương trình $z^2-2z+17=0$ là
![]() | $4i$ |
![]() | $1-4i$, $1+4i$ |
![]() | $-16i$ |
![]() | $2+4i$, $2-4i$ |
Trên tập hợp các số phức, xét phương trình $z^2-2mz+8m-12=0$ ($m$ là tham số thực). Có bao nhiêu giá trị nguyên của $m$ để phương trình đó có hai nghiệm phân biệt $z_1,\,z_2$ thỏa mãn $\left|z_1\right|=\left|z_2\right|$?
![]() | $5$ |
![]() | $6$ |
![]() | $3$ |
![]() | $4$ |
Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng
![]() | $1$ |
![]() | $-3$ |
![]() | $9$ |
![]() | $-9$ |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.
![]() | $b=2^{1009}$ |
![]() | $b=2^{2017}$ |
![]() | $b=-2^{2018}$ |
![]() | $b=2^{2018}$ |
Cho số phức $z=x+yi$ ($x,\,y\in\mathbb{R}$) thỏa mãn $z+2\overline{z}=2-4i$. Giá trị $3x+y$ bằng
![]() | $7$ |
![]() | $5$ |
![]() | $6$ |
![]() | $10$ |