Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=0$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Tìm hàm số \(F(x)\) biết \(F'(x)=\sin2x\) và \(F\left(\dfrac{\pi}{2}\right)=1\).
\(F(x)=\dfrac{1}{2}\cos2x+\dfrac{3}{2}\) | |
\(F(x)=2x-\pi+1\) | |
\(F(x)=-\dfrac{1}{2}\cos2x+\dfrac{1}{2}\) | |
\(F(x)=-\cos2x\) |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Họ nguyên hàm của hàm số \(f(x)=\sin3x\) là
\(\dfrac{1}{3}\cos3x+C\) | |
\(-\dfrac{1}{3}\cos3x+C\) | |
\(-3\cos3x+C\) | |
\(3\cos3x+C\) |
Tìm nguyên hàm \(F(x)\) của hàm số \(f(x)=6x+\sin x\), biết \(F(0)=\dfrac{2}{3}\).
\(F(x)=3x^2-\cos x+\dfrac{5}{3}\) | |
\(F(x)=3x^2+\cos x+1\) | |
\(F(x)=3x^2-\cos x+1\) | |
\(F(x)=3x^2-\cos x-\dfrac{1}{3}\) |
Cho hàm số \(f(x)\) thỏa mãn đồng thời các điều kiện \(f'(x)=x+\sin x\) và \(f(0)=1\). Tìm \(f(x)\).
\(f(x)=\dfrac{x^2}{2}-\cos x+2\) | |
\(f(x)=\dfrac{x^2}{2}-\cos x-2\) | |
\(f(x)=\dfrac{x^2}{2}+\cos x\) | |
\(f(x)=\dfrac{x^2}{2}+\cos x+\dfrac{1}{2}\) |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
$f(5)=2020-\dfrac{1}{2}\ln2$ | |
$f(5)=2021-\ln2$ | |
$f(5)=2021+\ln2$ | |
$f(5)=2020+\ln2$ |
Cho hàm số $f(x)=1+\sin x$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\sin x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cos x+C$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
$f\left(x\right)=3x+5\sin x+2$ | |
$f\left(x\right)=3x-5\sin x-5$ | |
$f\left(x\right)=3x-5\sin x+5$ | |
$f\left(x\right)=3x+5\sin x+5$ |
Hàm số $F\left(x\right)=\cos3x$ là nguyên hàm của hàm số
$f\left(x\right)=\dfrac{\sin3x}{3}$ | |
$f\left(x\right)=-3\sin3x$ | |
$f\left(x\right)=3\sin 3x$ | |
$f\left(x\right)=-\sin3x$ |
Tìm nguyên hàm của hàm số $f(x)=\cos3x$.
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\dfrac{1}{3}\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=3\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=-\dfrac{1}{3}\sin3x+C$ |
Nguyên hàm $\displaystyle\displaystyle\int\sin x\mathrm{d}x$ là
$-\cos x+C$ | |
$\cos x+C$ | |
$\dfrac{1}{2}\cos2x+C$ | |
$-\cos2x+C$ |
Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?
$y=\dfrac{1}{3}x^3+\cos x$ | |
$y=2x+\cos x$ | |
$y=\dfrac{1}{3}x^3-\cos x$ | |
$y=2x-\cos x$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x+3}$ và $F(0)=0$. Tính $F(2)$.
$F(2)=\ln\dfrac{7}{3}$ | |
$F(2)=-\dfrac{1}{2}\ln3$ | |
$F(2)=\dfrac{1}{2}\ln\dfrac{7}{3}$ | |
$F(2)=\ln21$ |
Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$ |
Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.
$F(3)=\dfrac{7}{4}$ | |
$F(3)=\ln2+1$ | |
$F(3)=\dfrac{1}{2}$ | |
$F(3)=\ln2-1$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
$\dfrac{23}{3}$ | |
$\dfrac{23}{6}$ | |
$\dfrac{17}{6}$ | |
$\dfrac{17}{3}$ |