Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-2)^2+(y-3)^2+(z-5)^2=100\) và điểm \(M(-3;3;-3)\) nằm trên mặt phẳng \((\alpha)\colon2x-2y+z+15=0\). Đường thẳng \(\Delta\) nằm trên mặt phẳng \((\alpha)\), đi qua \(M\) và cắt mặt cầu \((S)\) tại hai điểm \(A,\,B\) sao cho đoạn thẳng \(AB\) có độ dài lớn nhất. Viết phương trình đường thẳng \(\Delta\).
\(\dfrac{x+3}{1}=\dfrac{y-3}{1}=\dfrac{z+3}{3}\) | |
\(\dfrac{x+3}{16}=\dfrac{y-3}{11}=\dfrac{z+3}{-10}\) | |
\(\dfrac{x+3}{5}=\dfrac{y-3}{1}=\dfrac{z+3}{8}\) | |
\(\dfrac{x+3}{1}=\dfrac{y-3}{4}=\dfrac{z+3}{6}\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-4)^2+(y+3)^2+(z+6)^2=50$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Có bao nhiêu điểm $M$ thuộc trục hoành, với hoành độ là số nguyên, mà từ $M$ kẻ được đến $(S)$ hai tiếp tuyến cùng vuông góc với $d$?
$29$ | |
$33$ | |
$55$ | |
$28$ |
Trong không gian $Oxyz$, biết đường thẳng $(d)\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z}{2}$ cắt mặt phẳng $(P)\colon x-y+2z+3=0$ tại điểm $M(a;b;c)$. Giá trị $P=a+b+c$ bằng
$5$ | |
$-2$ | |
$-5$ | |
$0$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=4$ và đường thẳng $d$ đi qua điểm $A(1;0;-2)$, nhận $\overrightarrow{u}=(1;a;1-a)$ (với $a\in\mathbb{R}$) làm vectơ chỉ phương. Biết rằng $d$ cắt $(S)$ tại hai điểm phân biệt mà các tiếp diện của $(S)$ tại hai điểm đó vuông góc với nhau. Hỏi $a^2$ thuộc khoảng nào dưới đây?
$\left(\dfrac{1}{2};\dfrac{3}{2}\right)$ | |
$\left(\dfrac{3}{2};2\right)$ | |
$\left(7;\dfrac{15}{2}\right)$ | |
$\left(0;\dfrac{1}{4}\right)$ |
Trong không gian $Oxyz$, gọi $M(a;b;c)$ là giao điểm của đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-3}{-1}=\dfrac{z-2}{1}$ và mặt phẳng $(P)\colon2x+3y-4z+4=0$. Tính $T=a+b+c$.
$T=\dfrac{3}{2}$ | |
$T=6$ | |
$T=4$ | |
$T=-\dfrac{5}{2}$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng
\(2\) | |
\(-1\) | |
\(-2\) | |
\(1\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z-2}{-1}\) và hai điểm \(A(-1;3;1)\), \(B(0;2;-1)\). Gọi \(C(m;n;p)\) là điểm thuộc \(d\) sao cho diện tích của tam giác \(ABC\) bằng \(2\sqrt{2}\). Giá trị của \(T=m+n+p\) bằng
\(T=0\) | |
\(T=-1\) | |
\(T=-2\) | |
\(T=3\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y-3}{-1}=\dfrac{z-1}{1}\) cắt mặt phẳng \((P)\colon2x-3y+z-2=0\) tại điểm \(I(a;b;c)\). Khi đó \(a+b+c\) bằng
\(7\) | |
\(3\) | |
\(9\) | |
\(5\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).
\(a+b=1\) | |
\(a+b=-1\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Trong không gian $Oxyz$, phương trình đường thẳng $d$ đi qua điểm $M(2;1;-1)$ và có một vectơ chỉ phương $\overrightarrow{u}=(1;-2;3)$ là
$\dfrac{x-1}{2}=\dfrac{y+2}{1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-2}{1}=\dfrac{y-1}{-2}=\dfrac{z+1}{3}$ | |
$\dfrac{x+1}{2}=\dfrac{y-2}{1}=\dfrac{z+3}{-1}$ | |
$\dfrac{x+2}{1}=\dfrac{y+1}{-2}=\dfrac{z-1}{3}$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
$\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, tọa độ hình chiếu vuông góc của điểm $M(1;0;1)$ lên đường thẳng $\Delta\colon\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}$ là
$\left(\dfrac{2}{7};\dfrac{4}{7};\dfrac{6}{7}\right)$ | |
$(2;4;6)$ | |
$(0;0;0)$ | |
$\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)$ |
Trong không gian $Oxyz$, viết phương trình đường thẳng đi qua hai điểm $P(1;1;-1)$, $Q(2;3;2)$.
$\dfrac{x-1}{2}=\dfrac{y-1}{3}=\dfrac{z+1}{2}$ | |
$\dfrac{x+1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z+1}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z-3}{-1}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z+3}{-2}$. Điểm nào dưới đây thuộc $d$?
$P(1;2;3)$ | |
$Q(1;2;-3)$ | |
$N(2;1;2)$ | |
$M(2;-1;-2)$ |
Trong không gian $Oxyz$, cho ba điểm $A(1;2;-1)$, $B(3;0;1)$ và $C(2;2;-2)$. Đường thẳng đi qua $A$ và vuông góc với mặt phẳng $(ABC)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-2}{-2}=\dfrac{z+1}{3}$ | |
$\dfrac{x+1}{1}=\dfrac{y+2}{2}=\dfrac{z-1}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z-1}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z+1}{1}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+(y-2)^2+(z+1)^2=6$. Đường kính của $(S)$ bằng
$\sqrt{6}$ | |
$12$ | |
$2\sqrt{6}$ | |
$3$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
$\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ | |
$\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ | |
$\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |