Ngân hàng bài tập

Bài tập tương tự

A

Trong không gian \(Oxyz\), cho ba điểm \(A(-2;1;0)\), \(B(-3;0;4)\), \(C(0;7;3)\). Tính \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)\).

\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\sqrt{798}}{57}\)
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{14\sqrt{118}}{354}\)
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{\sqrt{798}}{57}\)
\(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{7\sqrt{118}}{177}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).

\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\)
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\)
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\)
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(-3;4;0)\), \(\vec{b}=(5;0;12)\). Tính cosin góc giữa \(\vec{a}\) và \(\vec{b}\).

\(\dfrac{3}{13}\)
\(-\dfrac{3}{13}\)
\(-\dfrac{5}{6}\)
\(\dfrac{5}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(-1;1;0)\), \(\vec{v}=(0;-1;0)\). Góc giữa \(\vec{u}\) và \(\vec{v}\) có số đo bằng

\(120^\circ\)
\(45^\circ\)
\(135^\circ\)
\(60^\circ\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho ba điểm \(A(-1;-2;3)\), \(B(0;3;1)\), \(C(4;2;2)\). Côsin của góc \(\widehat{BAC}\) bằng

\(-\dfrac{9}{\sqrt{35}}\)
\(-\dfrac{9}{2\sqrt{35}}\)
\(\dfrac{9}{\sqrt{35}}\)
\(\dfrac{9}{2\sqrt{35}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ \(Oxyz\) cho \(A(-1;2;4)\), \(B(-1;1;4)\), \(C(0;0;4)\). Tìm số đo của \(\widehat{ABC}\).

\(135^\circ\)
\(120^\circ\)
\(45^\circ\)
\(60^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?

Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\)
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\)
\(\vec{m}\cdot\vec{n}=-1\)
\(\vec{m}\) và \(\vec{n}\) không cùng phương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình lập phương $ABCD.A'B'C'D'$. Tính góc giữa 2 vectơ $\overrightarrow{AB},\,\overrightarrow{A'C'}$.

$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=45^\circ$
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=60^\circ$
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=30^\circ$
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=90^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho 2 vectơ $\overrightarrow{u}=\overrightarrow{AB}$, $\overrightarrow{v}=\overrightarrow{AC}$. Khi đó $\big(\overrightarrow{u},\overrightarrow{v}\big)$ bằng

$\widehat{ABC}$
$90^\circ$
$\widehat{ACB}$
$\widehat{BAC}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng

$3$
$6$
$2$
$3\sqrt{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).

\(150^\circ\)
\(90^\circ\)
\(120^\circ\)
\(45^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).

\(\cos A=\dfrac{2}{\sqrt{17}}\)
\(\cos A=\dfrac{1}{\sqrt{17}}\)
\(\cos A=-\dfrac{2}{\sqrt{17}}\)
\(\cos A=-\dfrac{1}{\sqrt{17}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).

\(\dfrac{\sqrt{2}}{2}\)
\(-\dfrac{\sqrt{2}}{2}\)
\(-135^\circ\)
\(135^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng

\(135^\circ\)
\(45^\circ\)
\(30^\circ\)
\(60^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;5)\) và \(\vec{b}=(3;-7)\). Tính góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\).

\(60^\circ\)
\(45^\circ\)
\(135^\circ\)
\(120^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho \(\vec{u}=\vec{a}+3\vec{b}\) vuông góc với \(\vec{v}=7\vec{a}-5\vec{b}\) và \(\vec{x}=\vec{a}-4\vec{b}\) vuông góc với \(\vec{y}=7\vec{a}-2\vec{b}\). Khi đó góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\) bằng.

\(\left(\vec{a},\vec{b}\right)=75^\circ\)
\(\left(\vec{a},\vec{b}\right)=60^\circ\)
\(\left(\vec{a},\vec{b}\right)=120^\circ\)
\(\left(\vec{a},\vec{b}\right)=45^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Trong không gian $Oxyz$, xét mặt cầu $(S)$ có tâm $I(4;8;12)$ và bán kính $R$ thay đổi. Có bao nhiêu giá trị nguyên của $R$ sao cho ứng với mỗi giá trị đó, tồn tại hai tiếp tuyến của $(S)$ trong mặt phẳng $(Oyz)$ mà hai tiếp tuyến đó cùng đi qua $O$ và góc giữa chúng không nhỏ hơn $60^\circ$?

$6$
$2$
$10$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là

$(-1;4;-5)$
$(1;-4;5)$
$(3;0;1)$
$(3;0;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng

$\dfrac{7\sqrt{55}}{55}$
$\dfrac{\sqrt{55}}{55}$
$0$
$\dfrac{-3\sqrt{55}}{11}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?

$\overrightarrow{n_1}=(2;1;-1)$
$\overrightarrow{n_3}=(1;-1;3)$
$\overrightarrow{n_4}=(2;-1;3)$
$\overrightarrow{n_2}=(2;1;3)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự