Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
$f(5)=2020-\dfrac{1}{2}\ln2$ | |
$f(5)=2021-\ln2$ | |
$f(5)=2021+\ln2$ | |
$f(5)=2020+\ln2$ |
Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.
$F(3)=\dfrac{7}{4}$ | |
$F(3)=\ln2+1$ | |
$F(3)=\dfrac{1}{2}$ | |
$F(3)=\ln2-1$ |
Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{2x+1}\), biết \(F(0)=2\). Tính \(F(1)\).
\(F(1)=\dfrac{1}{2}\ln3+2\) | |
\(F(1)=\ln3+2\) | |
\(F(1)=2\ln3-2\) | |
\(F(1)=\dfrac{1}{2}\ln3-2\) |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1;4\}$ có $f'(x)=\dfrac{2x-5}{x^2-5x+4}$ thỏa mãn $f(3)=1$. Giá trị $f(2)$ bằng
$1$ | |
$-1+3\ln2$ | |
$1+3\ln2$ | |
$1-\ln2$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=0$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
\(3< f(5)<4\) | |
\(2< f(5)<3\) | |
\(1< f(5)<2\) | |
\(4< f(5)<5\) |
Biết \(F(x)\) là nguyên hàm của hàm số \(f(x)=\dfrac{1}{x-1}\) và \(F(2)=1\). Khi đó \(F(3)\) bằng bao nhiêu?
\(\ln\dfrac{3}{2}\) | |
\(\ln2+1\) | |
\(\ln2\) | |
\(\dfrac{1}{2}\) |
Cho hàm số $f(x)=\begin{cases}2x+5 &\text{khi }x\ge1\\ 3x^2+4 &\text{khi }x< 1\end{cases}$. Giả sử $F$ là nguyên hàm của $f$ trên $\mathbb{R}$ thỏa mãn $F(0)=2$. Giá trị của $F(-1)+2F(2)$ bằng
$27$ | |
$29$ | |
$12$ | |
$33$ |
Họ các nguyên hàm của hàm số $f(x)=\dfrac{2}{x+1}$ trên $\mathbb{R}\setminus\{-1\}$ là
$\dfrac{-2}{(x+1)^2}+C$ | |
$2\ln|x+1|+C$ | |
$-\dfrac{1}{2}\ln|x+1|+C$ | |
$\dfrac{1}{(x+1)^2}+C$ |
Cho hàm số $y=f(x)$ có đạo hàm là $f^{\prime}(x)=12x^2+2$, $\forall x\in\mathbb{R}$ và $f(1)=3$. Biết $F(x)$ là nguyên hàm của $f(x)$ thỏa mãn $F(0)=2$, khi đó $F(1)$ bằng
$-3$ | |
$1$ | |
$2$ | |
$7$ |
Tất cả nguyên hàm của hàm số $f\left(x\right)=\dfrac{1}{2x+3}$ là
$\dfrac{1}{2}\ln\left(2x+3\right)+C$ | |
$\dfrac{1}{2}\ln\left|2x+3\right|+C$ | |
$\ln \left|2x+3\right|+C$ | |
$\dfrac{1}{\ln2}\ln\left|2x+3\right|+C$ |
Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?
$F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$ | |
$F(x)=\cos(1-2x)$ | |
$F(x)=\cos(1-2x)+1$ | |
$F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$ |
Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).
\(f(1)=8-2\mathrm{e}\) | |
\(f(1)=\mathrm{e}\) | |
\(f(1)=3\) | |
\(f(1)=5-2\mathrm{e}\) |
Tìm nguyên hàm của hàm số \(f(x)=\dfrac{1}{1-2x}\) trên khoảng \(\left(-\infty;\dfrac{1}{2}\right)\).
\(\dfrac{1}{2}\ln|2x-1|+C\) | |
\(\dfrac{1}{2}\ln(1-2x)+C\) | |
\(\ln|2x-1|+C\) | |
\(-\dfrac{1}{2}\ln|2x-1|+C\) |
\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\cot x\) và \(F\left(\dfrac{\pi}{2}\right)=0\). Giá trị của \(F\left(\dfrac{\pi}{6}\right)\) bằng
\(-\ln\left(\dfrac{\sqrt{3}}{2}\right)\) | |
\(\ln\left(\dfrac{\sqrt{3}}{2}\right)\) | |
\(\ln2\) | |
\(-\ln2\) |
Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)=\mathrm{e}^{3x}\) thỏa \(F(0)=1\). Mệnh đề nào sau đây là đúng?
\(F(x)=\dfrac{1}{3}\mathrm{e}^{3x}+\dfrac{2}{3}\) | |
\(F(x)=\dfrac{1}{3}\mathrm{e}^{3x}+1\) | |
\(F(x)=\dfrac{1}{3}\mathrm{e}^{3x}\) | |
\(F(x)=-\dfrac{1}{3}\mathrm{e}^{3x}+\dfrac{4}{3}\) |
Một nguyên hàm \(F(x)\) của hàm số \(f(x)=\dfrac{\mathrm{e}^x}{\mathrm{e}^x+2}\) thỏa \(F(0)=-\ln3\) là
\(\ln\left(\mathrm{e}^x+2\right)+\ln3\) | |
\(\ln\left(\mathrm{e}^x+2\right)+2\ln3\) | |
\(\ln\left(\mathrm{e}^x+2\right)-\ln3\) | |
\(\ln\left(\mathrm{e}^x+2\right)-2\ln3\) |
Tìm hàm số \(F(x)\) biết \(F'(x)=\sin2x\) và \(F\left(\dfrac{\pi}{2}\right)=1\).
\(F(x)=\dfrac{1}{2}\cos2x+\dfrac{3}{2}\) | |
\(F(x)=2x-\pi+1\) | |
\(F(x)=-\dfrac{1}{2}\cos2x+\dfrac{1}{2}\) | |
\(F(x)=-\cos2x\) |
Hàm số nào dưới đây là nguyên hàm của hàm số \(f(x)=\dfrac{1}{1-x}\)?
\(F(x)=-\dfrac{1}{4}\ln|4-4x|+3\) | |
\(F(x)=-\ln|1-x|+4\) | |
\(F(x)=\ln|1-x|+2\) | |
\(F(x)=\dfrac{1}{2}\ln\left(x^2-2x+1\right)+5\) |