Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=0$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?
$F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$ | |
$F(x)=\cos(1-2x)$ | |
$F(x)=\cos(1-2x)+1$ | |
$F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$ |
Tìm hàm số \(F(x)\) biết \(F'(x)=\sin2x\) và \(F\left(\dfrac{\pi}{2}\right)=1\).
\(F(x)=\dfrac{1}{2}\cos2x+\dfrac{3}{2}\) | |
\(F(x)=2x-\pi+1\) | |
\(F(x)=-\dfrac{1}{2}\cos2x+\dfrac{1}{2}\) | |
\(F(x)=-\cos2x\) |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
$f(5)=2020-\dfrac{1}{2}\ln2$ | |
$f(5)=2021-\ln2$ | |
$f(5)=2021+\ln2$ | |
$f(5)=2020+\ln2$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x+3}$ và $F(0)=0$. Tính $F(2)$.
$F(2)=\ln\dfrac{7}{3}$ | |
$F(2)=-\dfrac{1}{2}\ln3$ | |
$F(2)=\dfrac{1}{2}\ln\dfrac{7}{3}$ | |
$F(2)=\ln21$ |
Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.
$F(3)=\dfrac{7}{4}$ | |
$F(3)=\ln2+1$ | |
$F(3)=\dfrac{1}{2}$ | |
$F(3)=\ln2-1$ |
Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
\(3< f(5)<4\) | |
\(2< f(5)<3\) | |
\(1< f(5)<2\) | |
\(4< f(5)<5\) |
Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{2x+1}\), biết \(F(0)=2\). Tính \(F(1)\).
\(F(1)=\dfrac{1}{2}\ln3+2\) | |
\(F(1)=\ln3+2\) | |
\(F(1)=2\ln3-2\) | |
\(F(1)=\dfrac{1}{2}\ln3-2\) |
Họ nguyên hàm của hàm số \(f(x)=\sin3x\) là
\(\dfrac{1}{3}\cos3x+C\) | |
\(-\dfrac{1}{3}\cos3x+C\) | |
\(-3\cos3x+C\) | |
\(3\cos3x+C\) |
\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\cot x\) và \(F\left(\dfrac{\pi}{2}\right)=0\). Giá trị của \(F\left(\dfrac{\pi}{6}\right)\) bằng
\(-\ln\left(\dfrac{\sqrt{3}}{2}\right)\) | |
\(\ln\left(\dfrac{\sqrt{3}}{2}\right)\) | |
\(\ln2\) | |
\(-\ln2\) |
Biết \(F(x)\) là nguyên hàm của hàm số \(f(x)=\dfrac{1}{x-1}\) và \(F(2)=1\). Khi đó \(F(3)\) bằng bao nhiêu?
\(\ln\dfrac{3}{2}\) | |
\(\ln2+1\) | |
\(\ln2\) | |
\(\dfrac{1}{2}\) |
Tìm nguyên hàm \(F(x)\) của hàm số \(f(x)=6x+\sin x\), biết \(F(0)=\dfrac{2}{3}\).
\(F(x)=3x^2-\cos x+\dfrac{5}{3}\) | |
\(F(x)=3x^2+\cos x+1\) | |
\(F(x)=3x^2-\cos x+1\) | |
\(F(x)=3x^2-\cos x-\dfrac{1}{3}\) |
Cho hàm số \(f(x)\) thỏa mãn đồng thời các điều kiện \(f'(x)=x+\sin x\) và \(f(0)=1\). Tìm \(f(x)\).
\(f(x)=\dfrac{x^2}{2}-\cos x+2\) | |
\(f(x)=\dfrac{x^2}{2}-\cos x-2\) | |
\(f(x)=\dfrac{x^2}{2}+\cos x\) | |
\(f(x)=\dfrac{x^2}{2}+\cos x+\dfrac{1}{2}\) |
Cho hàm số $f(x)=\begin{cases}2x+5 &\text{khi }x\ge1\\ 3x^2+4 &\text{khi }x< 1\end{cases}$. Giả sử $F$ là nguyên hàm của $f$ trên $\mathbb{R}$ thỏa mãn $F(0)=2$. Giá trị của $F(-1)+2F(2)$ bằng
$27$ | |
$29$ | |
$12$ | |
$33$ |
Cho hàm số $y=f(x)$ có đạo hàm là $f^{\prime}(x)=12x^2+2$, $\forall x\in\mathbb{R}$ và $f(1)=3$. Biết $F(x)$ là nguyên hàm của $f(x)$ thỏa mãn $F(0)=2$, khi đó $F(1)$ bằng
$-3$ | |
$1$ | |
$2$ | |
$7$ |
Cho hàm số $f(x)=1+\sin x$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\sin x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cos x+C$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
$f\left(x\right)=3x+5\sin x+2$ | |
$f\left(x\right)=3x-5\sin x-5$ | |
$f\left(x\right)=3x-5\sin x+5$ | |
$f\left(x\right)=3x+5\sin x+5$ |
Hàm số $F\left(x\right)=\cos3x$ là nguyên hàm của hàm số
$f\left(x\right)=\dfrac{\sin3x}{3}$ | |
$f\left(x\right)=-3\sin3x$ | |
$f\left(x\right)=3\sin 3x$ | |
$f\left(x\right)=-\sin3x$ |