Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A(2;1;-1)\), \(B(-1;0;4)\) và \(C(0;-2;-1)\). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm \(A\) và vuông góc với đường thẳng \(BC\)?
\(x-2y-5z-5=0\) | |
\(x-2y-5z+5=0\) | |
\(x-2y-5z-2=0\) | |
\(2x+y-z-5=0\) |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?
$\overrightarrow{n_1}=(2;1;-1)$ | |
$\overrightarrow{n_3}=(1;-1;3)$ | |
$\overrightarrow{n_4}=(2;-1;3)$ | |
$\overrightarrow{n_2}=(2;1;3)$ |
Trong không gian $Oxyz$, cho điểm $M(2;-1;3)$ và mặt phẳng $(P)\colon3x-2y+z+1=0$. Phương trình mặt phẳng đi qua $M$ và song song với $(P)$ là
$3x-2y+z-11=0$ | |
$2x-y+3z-14=0$ | |
$3x-2y+z+11=0$ | |
$2x-y+3z+14=0$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;1;-1)$, $B(-1;0;4)$, $C(0;-2;-1)$. Phương trình mặt phẳng đi qua $A$ và vuông góc với $BC$ là
$x-2y-5z+5=0$ | |
$x-2y-5=0$ | |
$2x-y+5z-5=0$ | |
$x-2y-5z-5=0$ |
Trong không gian $Oxyz$, mặt phẳng $(P)\colon x+y+z+1=0$ có một vectơ pháp tuyến là
$\overrightarrow{n_1}=(-1;1;1)$ | |
$\overrightarrow{n_4}=(1;1;-1)$ | |
$\overrightarrow{n_3}=(1;1;1)$ | |
$\overrightarrow{n_2}=(1;-1;1)$ |
Trong không gian $Oxyz$, cho $I(2;1;1)$ và mặt phẳng $(P)\colon2x+y+2z+2=0$. Viết phương trình mặt phẳng qua điểm $I$ và song song với mặt phẳng $(P)$.
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x+y-2z-2=0$. Mặt phẳng $(Q)$ đi qua $A(1;2;-1)$ và song song với $(P)$ có phương trình là
$2x+2y-4z+1=0$ | |
$x+y-2z-5=0$ | |
$2x+y+z-3=0$ | |
$x+y-2z-3=0$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;0;0)$ và $B(4;1;2)$. Mặt phẳng đi qua $A$ vuông góc với $AB$ có phương trình là
$3x+y+2z-17=0$ | |
$3x+y+2z-3=0$ | |
$5x+y+2z-5=0$ | |
$5x+y+2z-25=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon3x-y+2z-1=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của $(P)$?
$\overrightarrow{n_1}=(-3;1;2)$ | |
$\overrightarrow{n_2}=(3;-1;2)$ | |
$\overrightarrow{n_3}=(3;1;2)$ | |
$\overrightarrow{n_4}=(3;1;-2)$ |
Trong không gian $Oxyz$, cho hai điểm $A\left(1;0;3\right)$ và $B\left(-3;2;1\right)$. Mặt phẳng trung trực của đoạn thẳng $AB$ có phương trình là
$2x-y+z+1=0$ | |
$2x-y+z-1=0$ | |
$2x-y+z+7=0$ | |
$2x-y+z-5=0$ |
Trong không gian $Oxyz$, mặt phẳng $\left(P\right)\colon3x-z+2=0$ có một vectơ pháp tuyến là
$\overrightarrow{n}=\left(3;0;-1\right)$ | |
$\overrightarrow{n}=\left(3;-1;2\right)$ | |
$\overrightarrow{n}=\left(-3;0;-1\right)$ | |
$\overrightarrow{n}=\left(3;-1;0\right)$ |
Trong không gian $Oxyz$, viết phương trình mặt phẳng $(P)$ đi qua điểm $G(1;2;3)$ và cắt ba trục $Ox,\,Oy,\,Oz$ lần lượt tại $A,\,B,\,C$ sao cho $G$ là trọng tâm tam giác $ABC$.
$x+2y+3z-14=0$ | |
$\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1$ | |
$\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1$ | |
$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{z}{9}=1$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;3;-4)$, $B(-1;1;2)$. Mặt phẳng trung trực của đoạn thẳng $AB$ có phương trình là
$x+y-3z-5=0$ | |
$-x-y+3z+2=0$ | |
$x+y-3z+10=0$ | |
$-2x-2y+6z-11=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x-y+2z=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là
$\overrightarrow{n}=(-1;-1;2)$ | |
$\overrightarrow{m}=(1;1;0)$ | |
$\overrightarrow{p}=(2;1;-1)$ | |
$\overrightarrow{q}=(1;-1;2)$ |
Trong không gian $Oxyz$, mặt phẳng $(\alpha)$ đi qua hai điểm $A(1;0;0)$, $B(2;2;0)$ và vuông góc với mặt phẳng $(P)\colon x+y+z-2=0$ có phương trình là
$x+y-2z-4=0$ | |
$2x-y-3z-2=0$ | |
$x+y+z-1=0$ | |
$2x-y-z-2=0$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;0;0)$, $B(0;3;0)$ và $C(0;0;5)$. Mặt phẳng $(ABC)$ có phương trình là
$\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{5}=1$ | |
$\dfrac{x}{5}+\dfrac{y}{3}+\dfrac{z}{2}=1$ | |
$\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{5}=0$ | |
$\dfrac{x}{3}+\dfrac{y}{2}+\dfrac{z}{5}=1$ |
Trong không gian $Oxyz$, cho phương trình mặt phẳng $(P)\colon2x-z+2=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là
$(2;-1;0)$ | |
$(2;-1;2)$ | |
$(2;0;-1)$ | |
$(0;-1;2)$ |
Trong không gian $Oxyz$, cho điểm $M(2;-5;3)$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Mặt phẳng đi qua $M$ và vuông góc với $d$ có phương trình là
$2x-5y+3z-38=0$ | |
$2x+4y-z+19=0$ | |
$2x+4y-z-19=0$ | |
$2x+4y-z+11=0$ |
Trong không gian $Oxyz$, mặt phẳng $(P)\colon2x-3y+4z-1=0$ có một vectơ pháp tuyến là
$\overrightarrow{n_4}=(-1;2;-3)$ | |
$\overrightarrow{n_3}=(-3;4;-1)$ | |
$\overrightarrow{n_2}=(2;-3;4)$ | |
$\overrightarrow{n_1}=(2;3;4)$ |
Trong không gian $Oxyz$, viết phương trình mặt phẳng đi qua ba điểm $A\left(1;1;4\right)$, $B\left(2;7;9\right)$, $C\left(0;9;13\right)$.
$2x+y+z+1=0$ | |
$x-y+z-4=0$ | |
$7x-2y+z-9=0$ | |
$2x+y-z-2=0$ |