Công thức tính thể tích vật thể tròn xoay thu được khi cho hình phẳng (phần gạch sọc của hình vẽ) giới hạn bởi các đường $y=\sqrt{x+2}$, $Ox$, $x=1$ quay xung quanh trục $Ox$ là
$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}(x+2)\mathrm{d}x$ | |
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}\sqrt[4]{x+2}\mathrm{d}x$ | |
$\pi\displaystyle\displaystyle\int\limits_{-2}^{1}\sqrt{x+2}\mathrm{d}x$ | |
$\pi\displaystyle\displaystyle\int\limits_{1}^{4}(x+2)\mathrm{d}x$ |
Cho hàm bậc hai \(y=f(x)\) có đồ thị như hình bên. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x)\) và \(Ox\) quanh \(Ox\).
\(\dfrac{4\pi}{3}\) | |
\(-\dfrac{12\pi}{15}\) | |
\(\dfrac{16\pi}{15}\) | |
\(\dfrac{16\pi}{5}\) |
Cho \((H)\) là hình phẳng giới hạn bởi đồ thị của các hàm số \(y=\sqrt{x}\), \(y=0\), \(y=2-x\). Diện tích của \((H)\) là
\(\dfrac{4\sqrt{2}-1}{3}\) | |
\(\dfrac{8\sqrt{2}+3}{6}\) | |
\(\dfrac{7}{6}\) | |
\(\dfrac{5}{6}\) |
Cho hình phẳng giới hạn bởi đồ thị các hàm số \(y=\sqrt{x}\), đường thẳng \(y=2-x\) và trục hoành (phần gạch chéo trong hình vẽ).
Thể tích của khối tròn xoay sinh bởi hình phẳng trên khi quay quanh trục \(Ox\) bằng
\(\dfrac{5\pi}{4}\) | |
\(\dfrac{4\pi}{3}\) | |
\(\dfrac{7\pi}{6}\) | |
\(\dfrac{5\pi}{6}\) |
Gọi tam giác cong \(OAB\) là hình phẳng giới hạn bởi đồ thị các hàm số \(y=2x^2\), \(y=3-x\), \(y=0\) (như hình vẽ).
Tính diện tích \(S\) của tam giác cong \(OAB\).
\(S=\dfrac{8}{3}\) | |
\(S=\dfrac{4}{3}\) | |
\(S=\dfrac{5}{3}\) | |
\(S=\dfrac{10}{3}\) |
Tính diện tích hình phẳng giới hạn bởi các đường \(y=x^2\), \(y=-\dfrac{1}{3}x+\dfrac{4}{3}\) và trục hoành như hình vẽ.
\(\dfrac{7}{3}\) | |
\(\dfrac{56}{3}\) | |
\(\dfrac{39}{2}\) | |
\(\dfrac{11}{6}\) |
Tính diện tích phần hình phẳng gạch chéo (tam giác cong \(OAB\)) trong hình vẽ.
\(\dfrac{5}{6}\) | |
\(\dfrac{5\pi}{6}\) | |
\(\dfrac{8}{15}\) | |
\(\dfrac{8\pi}{15}\) |
Tính diện tích \(S\) của hình phẳng (phần gạch sọc) trong hình.
\(S=\dfrac{8}{3}\) | |
\(S=\dfrac{10}{3}\) | |
\(S=\dfrac{11}{3}\) | |
\(S=\dfrac{7}{3}\) |
Diện tích $S$ của phần hình phẳng được gạch chéo trong hình bên bằng
$S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}+\left(x^2-7x+12\right)\right|\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\rm{d}x-\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_0^2\dfrac{1}{2}{x^2}\mathrm{d}x+\displaystyle\displaystyle\int\limits_2^3\left(x^2-7x+12\right)\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_0^3\left|\dfrac{1}{2}{x^2}-\left(x^2-7x+12\right)\right|\mathrm{d}x$ |
Tính diện tích phần hình phẳng gạch chéo trong hình vẽ bên dưới.
$1$ | |
$\dfrac{7}{6}$ | |
$\dfrac{5}{3}$ | |
$\dfrac{7}{5}$ |
Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$ và trục hoành (phần gạch sọc như hình vẽ).
Mệnh đề nào sau đây là đúng?
$S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x$ | |
$S=\left|\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x+\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x\right|$ | |
$S=\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{b}^{c}f(x)\mathrm{d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{a}^{c}f(x)\mathrm{d}x-\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{d}x$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ bên dưới.
Diện tích $S$ của miền được tô đậm như hình vẽ được tính theo công thức nào sau đây?
$S=-\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x$ | |
$S=-\displaystyle\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x$ |
Một thùng rượu vang có dạng hình tròn xoay có hai đáy là hai hình tròn bằng nhau, khoảng cách giữa hai đáy bằng $80$ (cm). Đường sinh của mặt xung quanh thùng là một phần đường tròn có bán kính bằng $60$ (cm) (tham khảo hình minh họa bên).
Hỏi thùng đó có thể đựng bao nhiêu lít rượu? (làm tròn đến hàng đơn vị)
$771$ | |
$385$ | |
$603$ | |
$905$ |
Diện tích hình phẳng giới hạn bởi hai parabol $y=x^2+3x-1$ và $y=-x^2+x+3$ được tô đậm trong hình bên có giá trị bằng
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4x+2\right)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(2x^2+2x-4\right)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(4-2x-2x^2\right)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left(-4x-2\right)\mathrm{\,d}x$ |
Cho hàm số $y=2^x$ có đồ thị là đường cong trong hình bên.
Diện tích $S$ của hình phẳng được tô đậm trong hình bằng
$S=\displaystyle\displaystyle\int\limits_{1}^{2}2^x\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^{2x}\mathrm{\,d}x$ | |
$S=\pi\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{0}^{2}2^x\mathrm{\,d}x$ |
Cho hình phẳng $D$ giới hạn bởi các đường $y=x+2$, $y=0$, $x=1$ và $x=3$. Tính thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$.
$V=\dfrac{98}{3}$ | |
$V=8\pi$ | |
$V=\dfrac{98\pi}{3}$ | |
$V=\dfrac{98\pi^2}{3}$ |
Gọi $D$ là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x)$ liên tục trên đoạn $[a;b]$, trục hoành và hai đường thẳng $x=a$, $x=b$. Thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$ được tính theo công thức nào dưới đây?
$V=\pi^2\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$ | |
$V=\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$ | |
$V=\left(\pi\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\right)^2$ | |
$V=2\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$ |
Cho hình phẳng $D$ giới hạn bởi đồ thị của hai hàm số $y=f(x), y=g(x)$ (phần tô đậm trong hình vẽ).
Gọi $S$ là diện tích của hình phẳng $D$. Mệnh đề nào dưới đây đúng?
$S=\displaystyle\displaystyle\int\limits_{-3}^0\left[f(x)-g(x)\right]\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{-3}^0\left[g(x)-f(x)\right]\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{-3}^0\left[f(x)+g(x)\right]\mathrm{\,d}x$ | |
$S=\displaystyle\displaystyle\int\limits_{-3}^1\left[f(x)-g(x)\right]^2\mathrm{\,d}x$ |
Cho hình phẳng $\mathscr{D}$ giới hạn bởi đồ thị hàm số $y=2x-x^2$ và trục $Ox$. Thể tích của khối tròn xoay được tạo thành khi quay $\mathscr{D}$ quanh trục $Ox$ bằng
$\dfrac{256\pi}{15}$ | |
$\dfrac{64\pi}{15}$ | |
$\dfrac{16\pi}{15}$ | |
$\dfrac{4\pi}{3}$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.
Diện tích phần tô đậm bằng
$\displaystyle\displaystyle\int\limits_{-2}^{1}\left|f(x)\right|\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{0}^{1}\left|f(x)\right|\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{0}^{2}\left|f(x)\right|\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_{-2}^{0}\left|f(x)\right|\mathrm{\,d}x$ |