Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z-4=(1+i)|z|-(4+3z)i$. Giá trị của biểu thức $P=a-3b$ bằng
$P=-2$ | |
$P=6$ | |
$P=2$ | |
$P=-6$ |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2+z+6=0$. Khi đó $z_1+z_2+z_1z_2$ bằng
$7$ | |
$5$ | |
$-7$ | |
$-5$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
$\left(5;1\right)$ | |
$\left(-1;-5\right)$ | |
$\left(1;5\right)$ | |
$\left(-5;-1\right)$ |
Biết phương trình $z^2+mz+n=0$ ($m,\,n\in\mathbb{R}$) có một nghiệm là $1-3i$. Tính $n+3m$.
$4$ | |
$3$ | |
$16$ | |
$6$ |
Gọi $z_1,\,z_2$ là hai nghiệm phân biệt của phương trình $z^2+3z+4=0$ trên tập số phức. Tính giá trị của biểu thức $P=\left|z_1\right|+\left|z_2\right|$.
$P=4\sqrt{2}$ | |
$P=2\sqrt{2}$ | |
$P=4$ | |
$P=2$ |
Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng
$1$ | |
$-3$ | |
$9$ | |
$-9$ |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.
$b=2^{1009}$ | |
$b=2^{2017}$ | |
$b=-2^{2018}$ | |
$b=2^{2018}$ |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2+2z+3=0$. Tính $P=2\left|z_1\right|+5\left|z_2\right|$.
$P=\sqrt{3}$ | |
$P=5\sqrt{3}$ | |
$P=3\sqrt{3}$ | |
$P=7\sqrt{3}$ |
Gọi $z_1,\,z_2$ là hai nghiệm của phương trình $z^2-2z+5=0$. Giá trị của $z_1^2+z_2^2+z_1z_2$ bằng
$-9$ | |
$-1$ | |
$1$ | |
$9$ |
Gọi $z_1,\,z_2$ là các nghiệm phức của phương trình $z^2+2z+5=0$. Tính $M=\left|z_1\right|^2+\left|z_2\right|^2$.
$M=4\sqrt{5}$ | |
$M=2\sqrt{34}$ | |
$M=12$ | |
$M=10$ |
Gọi \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(z^2+6z+13=0\). Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(1-z_0\) là
\(N\left(-2;2\right)\) | |
\(M\left(4;2\right)\) | |
\(P\left(4;-2\right)\) | |
\(Q\left(2;-2\right)\) |
Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2-2z+5=0\). Môđun của số phức \(z_0+i\) bằng
\(2\) | |
\(\sqrt{2}\) | |
\(\sqrt{10}\) | |
\(10\) |
Cho số phức \(z\) thỏa mãn \(\dfrac{\overline{z}+i}{z-1}=2-i\). Tìm số phức \(w=1+z+z^2\).
\(w=5-2i\) | |
\(5+2i\) | |
\(w=\dfrac{9}{2}+2i\) | |
\(w=\dfrac{9}{2}-2i\) |
Cho hai số phức \(z_1,\,z_2\) thỏa mãn \(\left|z_1\right|=2\), \(\left|z_2\right|=\sqrt{3}\). Gọi \(M,\,N\) là các điểm biểu diễn cho \(z_1\) và \(iz_2\). Biết \(\widehat{MON}=30^\circ\). Tính \(S=\left|z_1^2+4z_2^2\right|\).
\(4\sqrt{7}\) | |
\(3\sqrt{3}\) | |
\(5\sqrt{2}\) | |
\(\sqrt{5}\) |
Cho số phức \(z=x+yi\) (\(x,\,y\in\mathbb{R}\)) có môđun nhỏ nhất thỏa mãn điều kiện \(|z-4-2i|=|z-2|\). Tính \(P=x^2+y^2\).
\(10\) | |
\(16\) | |
\(8\) | |
\(32\) |
Cho số phức \(z\) thỏa mãn $$(3+2\mathrm{i})z+(2-\mathrm{i})^2=4+\mathrm{i}$$Hiệu phần thực và phần ảo của \(z\) là
\(2\) | |
\(3\) | |
\(1\) | |
\(0\) |
Tổng phần thực và phần ảo của số phức \(z\) thỏa mãn \(\mathrm{i}z+(1-\mathrm{i})\overline{z}=-2\mathrm{i}\) bằng
\(6\) | |
\(-2\) | |
\(2\) | |
\(-6\) |
Cho hai số phức $z_1=2-i$ và $z_2=1+3i$. Phần thực của số phức $z_1-z_2$ bằng
$3$ | |
$-4$ | |
$1$ | |
$-1$ |
Xét các số phức $z$ thỏa mãn điều kiện $\left|\dfrac{-2-3i}{3-2i}z+1\right|=1$. Gọi $m, M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức $P=|z|$. Tính $S=2023-3M+2m$.
$S=2021$ | |
$S=2017$ | |
$S=2019$ | |
$S=2023$ |
Cho hai số phức $z_1=3-i$ và $z_2=-2+5i$. Khi đó mô-đun của số phức $z=z_1+z_2$ bằng
$\sqrt{17}$ | |
$2\sqrt{17}$ | |
$\sqrt{39}$ | |
$\sqrt{10}$ |