Cho số phức \(z\) thỏa mãn \(\dfrac{\overline{z}+i}{z-1}=2-i\). Tìm số phức \(w=1+z+z^2\).
\(w=5-2i\) | |
\(5+2i\) | |
\(w=\dfrac{9}{2}+2i\) | |
\(w=\dfrac{9}{2}-2i\) |
Tìm số phức \(z\) thỏa mãn $$z-1+4i=2i\overline{z}.$$
\(z=\dfrac{9}{5}-\dfrac{2}{5}i\) | |
\(z=-\dfrac{9}{5}+\dfrac{2}{5}i\) | |
\(z=\dfrac{7}{3}+\dfrac{2}{3}i\) | |
\(z=-\dfrac{7}{3}-\dfrac{2}{3}i\) |
Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng
\(-3\) | |
\(3\) | |
\(3i\) | |
\(2i\) |
Cho \(x,\,y\) là các số thực. Số phức \(z=i\left(1+xi+y+2i\right)\) bằng \(0\) khi
\(x=-1;\,y=-2\) | |
\(x=0;\,y=0\) | |
\(x=-2;\,y=-1\) | |
\(x=2;\,y=1\) |
Cho \(z\) là một số thuần ảo khác \(0\). Mệnh đề nào sau đây đúng?
\(\overline{z}\) là số thực | |
Phần ảo của \(z\) bằng \(0\) | |
\(z=\overline{z}\) | |
\(z+\overline{z}=0\) |
Cho số phức \(z\) thỏa mãn $$z+2\overline{z}=2+3\mathrm{i}$$Khi đó \(|z|\) bằng
\(\dfrac{\sqrt{29}}{3}\) | |
\(\dfrac{85}{3}\) | |
\(\dfrac{29}{3}\) | |
\(\dfrac{\sqrt{85}}{3}\) |
Tổng phần thực và phần ảo của số phức \(z\) thỏa mãn \(\mathrm{i}z+(1-\mathrm{i})\overline{z}=-2\mathrm{i}\) bằng
\(6\) | |
\(-2\) | |
\(2\) | |
\(-6\) |
Tìm hai số thực \(x,\,y\) thỏa mãn $$(2x-3y\mathrm{i})+(1-3\mathrm{i})=-1+6\mathrm{i}$$với \(\mathrm{i}\) là đơn vị ảo.
\(\begin{cases}x=1\\ y=-3\end{cases}\) | |
\(\begin{cases}x=-1\\ y=-3\end{cases}\) | |
\(\begin{cases}x=-1\\ y=-1\end{cases}\) | |
\(\begin{cases}x=1\\ y=-1\end{cases}\) |
Tìm các số thực \(a,\,b\) thỏa mãn $$2a+(b+\mathrm{i})\mathrm{i}=1+2\mathrm{i}$$với \(\mathrm{i}\) là đơn vị ảo.
\(a=0,\;b=2\) | |
\(a=\dfrac{1}{2},\;b=1\) | |
\(a=0,\;b=1\) | |
\(a=1,\;b=2\) |
Cho hai số phức $z_1=2-i$ và $z_2=1+3i$. Phần thực của số phức $z_1-z_2$ bằng
$3$ | |
$-4$ | |
$1$ | |
$-1$ |
Cho hai số phức $z_1=3-i$ và $z_2=-2+5i$. Khi đó mô-đun của số phức $z=z_1+z_2$ bằng
$\sqrt{17}$ | |
$2\sqrt{17}$ | |
$\sqrt{39}$ | |
$\sqrt{10}$ |
Xét số phức $z$ thỏa mãn $|z+3-2i|+|z-3+i|=3\sqrt{5}$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=|z+2|+|z-1-3i|$. Khi đó
$M=\sqrt{26}+2\sqrt{5}$, $m=3\sqrt{2}$ | |
$M=\sqrt{17}+\sqrt{5}$, $m=\sqrt{2}$ | |
$M=\sqrt{26}+2\sqrt{5}$, $m=\sqrt{2}$ | |
$M=\sqrt{17}+\sqrt{5}$, $m=3\sqrt{2}$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z-4=(1+i)|z|-(4+3z)i$. Giá trị của biểu thức $P=a-3b$ bằng
$P=-2$ | |
$P=6$ | |
$P=2$ | |
$P=-6$ |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(-1;-\dfrac{2}{3}\right)$ | |
$\left(-1;\dfrac{2}{3}\right)$ | |
$\left(1;-\dfrac{2}{3}\right)$ | |
$\left(1;\dfrac{2}{3}\right)$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.
Phần ảo của số phức $(1+i)z$ bằng
$7$ | |
$-7$ | |
$-1$ | |
$1$ |
Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng
$1$ | |
$-1$ | |
$-i$ | |
$i$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?
Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$ | |
$z^2=|z|^2$ | |
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$ | |
Mô-đun của $z$ là một số thực dương |
Cho số phức $z$ thỏa mãn $z=\dfrac{\left(1+\sqrt{3}i\right)^3}{1-i}$. Tìm mô-đun của $iz$.
$4$ | |
$4\sqrt{2}$ | |
$8\sqrt{2}$ | |
$8$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
$P(3;-12)$ | |
$Q(3;12)$ | |
$M(14;-5)$ | |
$N(-3;12)$ |