Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.
$b=2^{1009}$ | |
$b=2^{2017}$ | |
$b=-2^{2018}$ | |
$b=2^{2018}$ |
Gọi \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(z^2+6z+13=0\). Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(1-z_0\) là
\(N\left(-2;2\right)\) | |
\(M\left(4;2\right)\) | |
\(P\left(4;-2\right)\) | |
\(Q\left(2;-2\right)\) |
Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2-2z+5=0\). Môđun của số phức \(z_0+i\) bằng
\(2\) | |
\(\sqrt{2}\) | |
\(\sqrt{10}\) | |
\(10\) |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.
Phần ảo của số phức $(1+i)z$ bằng
$7$ | |
$-7$ | |
$-1$ | |
$1$ |
Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng
$1$ | |
$-1$ | |
$-i$ | |
$i$ |
Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng
$-\dfrac{11}{5}$ | |
$-\dfrac{11}{5}i$ | |
$\dfrac{11}{5}i$ | |
$\dfrac{11}{5}$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
$\left(5;1\right)$ | |
$\left(-1;-5\right)$ | |
$\left(1;5\right)$ | |
$\left(-5;-1\right)$ |
Số phức $z$ có điểm biểu diễn $M$ trong hình vẽ bên.
Phần ảo của số phức $z+i$ bằng
$4$ | |
$3i$ | |
$2$ | |
$6$ |
Cho số phức $z$ thỏa mãn $i\overline{z}=5+2i$. Phần ảo của $z$ bằng
$5$ | |
$2$ | |
$-5$ | |
$-2$ |
Gọi $z,\,w$ là các số phức có điểm biểu diễn lần lượt là $M$ và $N$ trên mặt phẳng $Oxy$ như hình minh họa bên.
Phần ảo của số phức $\dfrac{z}{w}$ là
$\dfrac{14}{17}$ | |
$3$ | |
$-\dfrac{5}{17}$ | |
$-\dfrac{1}{2}$ |
Ký hiệu $z$, $w$ là hai nghiệm phức của phương trình $2x^2-4x+9=0$. Giá trị của $P=\dfrac{1}{z}+\dfrac{1}{w}$ là
$-\dfrac{4}{9}$ | |
$-\dfrac{9}{4}$ | |
$\dfrac{4}{9}$ | |
$\dfrac{9}{8}$ |
Cho hai số phức \(z_1=3-i\), \(z_2=-1+i\). Phần ảo của số phức \(z_1z_2\) bằng
\(4\) | |
\(4i\) | |
\(-1\) | |
\(-i\) |
Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$
Phần thực là \(2\), phần ảo là \(4i\) | |
Phần thực là \(2\), phần ảo là \(-4i\) | |
Phần thực là \(2\), phần ảo là \(4\) | |
Phần thực là \(2\), phần ảo là \(-4\) |
Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(2z^2-6z+15=0\). Trên mặt phẳng tọa độ, tìm tọa độ của điểm \(M\) biểu diễn số phức \(z_0\).
\(M\left(-\dfrac{3}{2};\dfrac{\sqrt{21}}{2}i\right)\) | |
\(M\left(-\dfrac{3}{2};\dfrac{\sqrt{21}}{2}\right)\) | |
\(M\left(\dfrac{3}{2};\dfrac{\sqrt{21}}{2}\right)\) | |
\(M\left(\dfrac{3}{2};\dfrac{\sqrt{21}}{2}i\right)\) |
Tìm nghiệm phức có phần ảo âm của phương trình $$z^2-4z+13=0.$$
\(z=-2-3i\) | |
\(z=2-3i\) | |
\(z=-2+3i\) | |
\(z=2+3i\) |
Cho hai số phức \(z_1=-4+\sqrt{2}i\) và \(z_2=1-\sqrt{3}i\). Tìm phần ảo của số phức \(z_1-z_2\).
Phần ảo là \(\sqrt{5}\) | |
Phần ảo là \(\sqrt{2}-\sqrt{3}\) | |
Phần ảo là \(\sqrt{2}+\sqrt{3}\) | |
Phần ảo là \(-5\) |
Cho hai số phức \(z_1=3+2i\) và \(z_2=1-5i\). Tìm phần thực và phần ảo của số phức \(z_1+z_2\).
Phần thực là \(4\) và phần ảo là \(3\) | |
Phần thực là \(4\) và phần ảo là \(-3i\) | |
Phần thực là \(4\) và phần ảo là \(3i\) | |
Phần thực là \(4\) và phần ảo là \(-3\) |
Cho hai số phức \(z_1=3-3i\), \(z_2=-1+2i\). Phần ảo của số phức \(w=z_1+2z_2\) là
\(-1\) | |
\(1\) | |
\(-7\) | |
\(7\) |
Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng
\(-3\) | |
\(3\) | |
\(3i\) | |
\(2i\) |