Ngân hàng bài tập

Bài tập tương tự

S

Trên tập hợp các số phức, xét phương trình $z^2-2mz+8m-12=0$ ($m$ là tham số thực). Có bao nhiêu giá trị nguyên của $m$ để phương trình đó có hai nghiệm phân biệt $z_1,\,z_2$ thỏa mãn $\left|z_1\right|=\left|z_2\right|$?

$5$
$6$
$3$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho các số phức \(z_1=3i\), \(z_2=-1-3i\) và \(z_3=m-2i\). Tập giá trị của tham số \(m\) để số phức \(z_3\) có môđun nhỏ nhất trong \(3\) số phức đã cho là

\(\left[-\sqrt{5};\sqrt{5}\right]\)
\(\left(-\sqrt{5};\sqrt{5}\right)\)
\(\left\{-\sqrt{5};\sqrt{5}\right\}\)
\(\left(-\infty;\sqrt{5}\right)\cup\left(\sqrt{5};+\infty\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trên tập số phức, xét phương trình $z^2+az+b=0$ $(a,b\in\mathbb{R})$. Có bao nhiêu cặp số $(a,b)$ để phương trình đó có hai nghiệm phân biệt $z_1,\,z_2$ thỏa mãn $\big|z_1-2\big|=2$ và $\big|z_2+1-4i\big|=4$?

$2$
$3$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong tập hợp số phức, xét phương trình $z^3-(2m+1)z^2+3mz-m=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có ba nghiệm phân biệt $z_1$, $z_2$, $z_3$ thỏa mãn $\big|z_1\big|+\big|z_2\big|+\big|z_3\big|=3$?

$0$
$1$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tên tập hợp số phức, xét phương trình $z^2-2(m+1)z+m^2=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có hai nghiệm phân biệt $z_1$, $z_2$ thỏa mãn $\big|z_1\big|+\big|z_2\big|=2$?

$1$
$4$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trên tập hợp các số phức, xét phương trình $z^2-2(m+1)z+m^2=0$ ($m$ là tham số thực). Có bao nhiêu giá trị của $m$ để phương trình đó có nghiệm $z_0$ thỏa mãn $\left|z_0\right|=7$?

$2$
$3$
$1$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
SSS

Cho số phức $z=x+yi$ ($x\geq0$, $y\geq0$) thỏa $$\left|z-1+i\right|\leq\left|z+3-i\right|\leq\left|z-3-5i\right|.$$ Giá trị lớn nhất của $T=35x+63y$ bằng

$70$
$126$
$172$
$203$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z+3+i-|z|i=0$. Tính $S=a+b$.

$-1$
$-3$
$0$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho \(m\in\mathbb{R}\). Số phức nào sau đây có môđun lớn nhất?

\(z_1=m\)
\(z_2=m+\mathrm{i}\)
\(z_3=m+2\mathrm{i}\)
\(z_4=3+m\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(m\in\mathbb{R}\). Số phức nào sau đây có môđun nhỏ nhất?

\(z_1=m\)
\(z_2=m+\mathrm{i}\)
\(z_3=m+2\mathrm{i}\)
\(z_4=3+m\mathrm{i}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Có bao nhiêu số nguyên dương $a$ sao cho ứng với mỗi số $a$ có đúng ba số nguyên $b$ thỏa mãn $\big(3^b-3\big)\big(a\cdot2^b-18\big)< 0$?

$72$
$73$
$71$
$74$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là

\(9\)
\(10\)
Vô số
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Gọi $S$ là tập hợp các số phức $z=a+bi$ $(a,b\in\mathbb{R}$ thỏa mãn $\big|z+\overline{z}\big|+\big|z-\overline{z}\big|=6$ và $ab\le0$. Xét $z_1$ và $z_2$ thuộc $S$ sao cho $\dfrac{z_1-z_2}{-1+i}$ là số thực dương. Giá trị nhỏ nhất của biểu thức $\big|z_1+3i\big|+\big|z_2\big|$ bằng

$3\sqrt{2}$
$3$
$3\sqrt{5}$
$3+3\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét các số phức $z$ thỏa mãn điều kiện $\left|\dfrac{-2-3i}{3-2i}z+1\right|=1$. Gọi $m, M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức $P=|z|$. Tính $S=2023-3M+2m$.

$S=2021$
$S=2017$
$S=2019$
$S=2023$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức $z_1=3-i$ và $z_2=-2+5i$. Khi đó mô-đun của số phức $z=z_1+z_2$ bằng

$\sqrt{17}$
$2\sqrt{17}$
$\sqrt{39}$
$\sqrt{10}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Xét số phức $z$ thỏa mãn $|z+3-2i|+|z-3+i|=3\sqrt{5}$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=|z+2|+|z-1-3i|$. Khi đó

$M=\sqrt{26}+2\sqrt{5}$, $m=3\sqrt{2}$
$M=\sqrt{17}+\sqrt{5}$, $m=\sqrt{2}$
$M=\sqrt{26}+2\sqrt{5}$, $m=\sqrt{2}$
$M=\sqrt{17}+\sqrt{5}$, $m=3\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) thỏa mãn $z-4=(1+i)|z|-(4+3z)i$. Giá trị của biểu thức $P=a-3b$ bằng

$P=-2$
$P=6$
$P=2$
$P=-6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.

$I(-3;-5)$, $R=\sqrt{5}$
$I(3;-5)$, $R=\sqrt{10}$
$I(-3;5)$, $R=\sqrt{10}$
$I(3;5)$, $R=10$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập hợp các số phức $z$ thỏa mãn $|z+1-2i|=3$ là đường tròn có tâm

$I(-1;2)$
$I(-1;-2)$
$I(1;-2)$
$I(1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?

Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$
$z^2=|z|^2$
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$
Mô-đun của $z$ là một số thực dương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự