Cho hàm số $f(x)$ thỏa mãn $f(x)=x\mathrm{e}^x+\displaystyle\int\limits_{0}^{2}\left(f(x)+f'(x)-\mathrm{e}^x-1\right)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
$2\mathrm{e}^2-1$ | |
$-2\mathrm{e}^2-1$ | |
$-2\mathrm{e}^2+1$ | |
$2\mathrm{e}^2+1$ |
Cho hàm số $f(x)$ thỏa mãn $\displaystyle\displaystyle\int\limits_{0}^{1}(x+1)f'(x)\mathrm{\,d}x=10$ và $2f(1)-f(0)=2$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
$I=-12$ | |
$I=8$ | |
$I=12$ | |
$I=-8$ |
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) liên tục trên \([0;2]\) và \(f(2)=3\), \(\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x=3\). Tính \(\displaystyle\int\limits_{0}^{2}x\cdot f'(x)\mathrm{\,d}x\).
\(6\) | |
\(3\) | |
\(0\) | |
\(-3\) |
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng
$\dfrac{7}{12}$ | |
$\dfrac{45}{4}$ | |
$\dfrac{1}{2}$ | |
$\dfrac{71}{6}$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
$2\ln3$ | |
$\ln3$ | |
$\ln18$ | |
$2\ln2$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng
$\dfrac{1073}{15}$ | |
$\dfrac{458}{15}$ | |
$\dfrac{838}{15}$ | |
$\dfrac{1016}{15}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, thỏa mãn $f(x)+2f(2-x)=x^2-6x+4$. Tích phân $\displaystyle\displaystyle\int\limits_{-1}^3x f^{\prime}(x)\mathrm{d}x$ bằng
$20$ | |
$\dfrac{149}{3}$ | |
$\dfrac{167}{3}$ | |
$\dfrac{176}{9}$ |
Tích phân $\displaystyle\displaystyle\int\limits_{0}^{10}x\mathrm{e}^{30x}\mathrm{\,d}x$ bằng
$\dfrac{1}{900}\left(299\mathrm{e}^{300}+1\right)$ | |
$300-900\mathrm{e}^{300}$ | |
$-300+900\mathrm{e}^{300}$ | |
$\dfrac{1}{900}\left(299\mathrm{e}^{300}-1\right)$ |
Cho các số thực $a,\,b$ ($a< b$) và hàm số $y=f(x)$ có đạo hàm là hàm liên tục trên $\mathbb{R}$. Mệnh đề nào sau đây là đúng?
$\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=f'(a)-f'(b)$ | |
$\displaystyle\displaystyle\int\limits_{a}^{b}f'(x)\mathrm{\,d}x=f(b)-f(a)$ | |
$\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=f'(b)-f'(a)$ | |
$\displaystyle\displaystyle\int\limits_{a}^{b}f'(x)\mathrm{\,d}x=f(a)-f(b)$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=x^2-3x+2\displaystyle\int\limits_{0}^{1}f(x)f'(x)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$ bằng
$\dfrac{10}{3}$ | |
$-\dfrac{10}{3}$ | |
$\dfrac{26}{15}$ | |
$-\dfrac{26}{15}$ |
Xét hàm số $f(x)=\mathrm{e}^x+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Giá trị $f\left(\ln5620\right)$ bằng
$5622$ | |
$5620$ | |
$5618$ | |
$5621$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
Cho hàm số $y=f\left(x\right)$ thoả mãn điều kiện $f\left(1\right)=12$, $f'\left(x\right)$ liên tục trên $\mathbb{R}$ và $\displaystyle\displaystyle\int\limits_{1}^{4}f'\left(x\right)\mathrm{d}x=17$. Khi đó $f\left(4\right)$ bằng
$5$ | |
$29$ | |
$19$ | |
$9$ |
Cho hàm số $y=f\left(x\right)$ có đạo hàm liên tục trên đoạn $\left[ -1;1\right]$ thỏa mãn $\displaystyle\displaystyle\int\limits_{-1}^{1}f'\left(x\right)\mathrm{d}x=5$ và $f\left(-1\right)=4$. Tìm $f\left(1\right)$.
$f\left(1\right)=-1$ | |
$f\left(1\right)=1$ | |
$f\left(1\right)=9$ | |
$f\left(1\right)=-9$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên đoạn $[0;2]$, $f(0)=3$ và $f(2)=0$. Tích phân $\displaystyle\displaystyle\int\limits_0^2f'(x)\mathrm{\,d}x$ có giá trị bằng
$3$ | |
$-3$ | |
$2$ | |
$\dfrac{3}{2}$ |
Cho $F(x)$ là một nguyên hàm của hàm số $f(x)$ trên đoạn $[1;3]$, $F(1)=3$, $F(3)=5$ và $\displaystyle\displaystyle\int\limits_1^3\left(x^4-8x\right)f(x)\mathrm{\,d}x=12$. Tính $I=\displaystyle\displaystyle\int\limits_1^3\left(x^3-2\right)F(x)\mathrm{\,d}x$.
$I=\dfrac{147}{2}$ | |
$I=\dfrac{147}{3}$ | |
$I=-\dfrac{147}{2}$ | |
$I=147$ |
Biết $F(x)=-\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=\dfrac{f(x)}{x}$. Tính $\displaystyle\displaystyle\int f'(x)\ln{x}\mathrm{\,d}x$.
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$ |
Cho hàm số $y=f(x)$ liên tục, thỏa mãn $f(x)=x\left(1+\dfrac{1}{\sqrt{x}}-f'(x)\right)$, $\forall x\in(0;+\infty)$ và $f(4)=\dfrac{4}{3}$. Giá trị của $\displaystyle\displaystyle\int\limits_{1}^{4}\left(x^2-1\right)f'(x)\mathrm{\,d}x$ bằng
$\dfrac{457}{15}$ | |
$\dfrac{457}{30}$ | |
$-\dfrac{263}{30}$ | |
$-\dfrac{263}{15}$ |
Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
$12$ | |
$16$ | |
$6$ | |
$10$ |
Cho hàm số $y=f(x)$ liên tục trên khoảng $(0;+\infty)$. Biết $f(1)=1$ và $f(x)=xf'(x)+\ln x$, $\forall x\in(0;+\infty)$. Giá trị của $f(\mathrm{e})$ bằng
$\mathrm{e}$ | |
$\dfrac{1}{\mathrm{e}}$ | |
$1$ | |
$2$ |