Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |
Trong không gian \(Oxyz\), cho điểm \(A(1;2;3)\) và đường thẳng \(d\colon\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+7}{-2}\). Đường thẳng đi qua \(A\), vuông góc với \(d\) và cắt trục \(Ox\) có phương trình là
\(\begin{cases}x=-1+2t\\ y=-2t\\ z=t\end{cases}\) | |
\(\begin{cases}x=1+t\\ y=2+2t\\ z=3+3t\end{cases}\) | |
\(\begin{cases}x=1+t\\ y=2+2t\\ z=3+2t\end{cases}\) | |
\(\begin{cases}x=-1+2t\\ y=2t\\ z=3t\end{cases}\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-3;4)\), đường thẳng \(d\colon\dfrac{x+3}{3}=\dfrac{y-5}{-5}=\dfrac{z-2}{-1}\) và mặt phẳng \((P)\colon2x+z-2=0\). Viết phương trình đường thẳng \(\Delta\) đi qua \(M\), vuông góc với \(d\) và song song với \((P)\).
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{-1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{2}\) |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là
$\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $M(3;2;-1)$ và mặt phẳng $(P)\colon x+z-2=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\begin{cases}x=3+t\\ y=2\\ z=-1+t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=2t\\ z=1-t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=1+2t\\ z=-t\end{cases}$ | |
$\begin{cases}x=3+t\\ y=2+t\\ z=-1\end{cases}$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$ | |
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$ |
Trong không gian $Oxyz$, cho điểm $M\left(1;-2;0\right)$ và mặt phẳng $\left(\alpha\right)\colon x+2y-2z+3=0$. Đường thẳng đi qua điểm $M$ và vuông góc với $\left(\alpha\right)$ có phương trình tham số là
$\begin{cases}x=1+t\\ y=2+2t\\ z=-2t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=-2+2t\\ z=2t\end{cases}$ | |
$\begin{cases}x=1-t\\ y=-2-2t\\ z=2t\end{cases}$ | |
$\begin{cases}x=1+t\\ y=2-2t\\ z=-2\end{cases}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-4)^2+(y+3)^2+(z+6)^2=50$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Có bao nhiêu điểm $M$ thuộc trục hoành, với hoành độ là số nguyên, mà từ $M$ kẻ được đến $(S)$ hai tiếp tuyến cùng vuông góc với $d$?
$29$ | |
$33$ | |
$55$ | |
$28$ |
Trong không gian $Oxyz$, phương trình chính tắc của đường thẳng $(d)\colon\begin{cases}x=1-2t\\ y=3t\\ z=2+t\end{cases}$ là
$\dfrac{x-1}{1}=\dfrac{y}{3}=\dfrac{z+2}{2}$ | |
$\dfrac{x+1}{1}=\dfrac{y}{3}=\dfrac{z-2}{2}$ | |
$\dfrac{x-1}{-2}=\dfrac{y}{3}=\dfrac{z-2}{1}$ | |
$\dfrac{x+1}{-2}=\dfrac{y}{3}=\dfrac{z+2}{1}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là
$\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$ | |
$\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ | |
$\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$ | |
$\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$ |
Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?
$\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$ | |
$\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$ | |
$\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$ | |
$\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$ |
Trong không gian $Oxyz$, cho hai đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y}{1}=\dfrac{z}{-2}$, $d'\colon\begin{cases} x=-1-2t\\ y=t\\ z=-1-t \end{cases}$ và mặt phẳng $(P)\colon x-y-z=0$. Biết rằng đường thẳng $\Delta$ song song với mặt phẳng $(P)$, cắt các đường thẳng $d,\,d'$ lần lượt tại $M$ và $N$ sao cho $MN=\sqrt{2}$ (điểm $M$ không trùng với gốc tọa độ $O$). Phương trình của đường thẳng $\Delta$ là
$\begin{cases}x=\dfrac{4}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ | |
$\begin{cases}x=-\dfrac{4}{7}+3t\\ y=\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ | |
$\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{3}{7}-5t\end{cases}$ | |
$\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $M(1;1;-2)$ và vuông góc với mặt phẳng $(P)\colon x-y-z-1=0$ là
$\dfrac{x+1}{1}=\dfrac{y+1}{-1}=\dfrac{z-2}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{-2}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{-1}=\dfrac{z+2}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z+1}{-2}$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$, đường thẳng $d\colon\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+y+2z+1=0$. Gọi $\Delta$ là đường thẳng qua $A$, vuông góc và cắt đường thẳng $d$. Tìm tọa độ giao điểm của đường thẳng $\Delta$ và mặt phẳng $(P)$.
$(0;3;-2)$ | |
$(6;-7;0)$ | |
$(3;-2;-1)$ | |
$(-3;8;-3)$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng
\(2\) | |
\(-1\) | |
\(-2\) | |
\(1\) |
Trong không gian \(Oxyz\), cho \(d\) là đường thẳng đi qua \(A(1;2;3)\) và vuông góc với mặt phẳng \((\alpha)\colon4x+3y-7z+1=0\). Phương trình tham số của đường thẳng \(d\) là
\(\begin{cases}x=1+3t\\ y=2-4t\\ z=3-7t\end{cases}\) | |
\(\begin{cases}x=1+4t\\ y=2+3t\\ z=3-7t\end{cases}\) | |
\(\begin{cases}x=-1+8t\\ y=-2+6t\\ z=-3-14t\end{cases}\) | |
\(\begin{cases}x=-1+4t\\ y=-2+3t\\ z=-3-7t\end{cases}\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm \(M(0;4;1)\) và vuông góc với mặt phẳng \((P)\colon2x-2y-z=0\)?
\(\begin{cases}x=-2\\y=2+4t\\z=1+t\end{cases}\) | |
\(\begin{cases}x=2\\y=-2+4t\\z=-1+t\end{cases}\) | |
\(\begin{cases}x=t\\y=4-t\\z=1-2t\end{cases}\) | |
\(\begin{cases}x=2t\\y=4-2t\\z=1-t\end{cases}\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+2y+z-4=0\) và đường thẳng \(d\colon\dfrac{x+1}{2}=\dfrac{y}{1}=\dfrac{z+2}{3}\). Đường thẳng \(\Delta\) nằm trong mặt phẳng \((P)\) đồng thời cắt và vuông góc với đường thẳng \(d\) có phương trình là
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{3}\) | |
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}\) | |
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y+1}{-1}=\dfrac{z-1}{-3}\) | |
\(\Delta\colon\dfrac{x-1}{5}=\dfrac{y-1}{-1}=\dfrac{z-1}{-3}\) |