Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian \(Oxyz\), mặt cầu đi qua ba điểm \(A\left(2;0;1\right)\), \(B\left(1;0;0\right)\), \(C\left(1;1;1\right)\) và có tâm thuộc mặt phẳng \(\left(P\right)\colon x+y+z-2=0\) có phương trình là
\(\left(x-1\right)^2+y^2+\left(z-1\right)^2=1\) | |
\(\left(x-1\right)^2+y^2+\left(z-1\right)^2=4\) | |
\(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=1\) | |
\(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=4\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian \(Oxyz\), cho hai điểm \(A\left(1;0;0\right)\), \(B\left(0;0;2\right)\) và mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x-2y+1=0\). Hỏi có tất cả bao nhiêu mặt phẳng chứa hai điểm \(A\), \(B\) và tiếp xúc với \(\left(S\right)\)?
\(1\) | |
\(3\) | |
\(2\) | |
\(0\) |
Mặt phẳng \((P)\) tiếp xúc với mặt cầu \((S)\colon(x-1)^2+(y+3)^2+(z-2)^2=49\) tại điểm \(M(7;-1;5)\) có phương trình là
\(6x+2y+3z-55=0\) | |
\(6x+2y+3z+55=0\) | |
\(3x+y+z-22=0\) | |
\(3x+y+z+22=0\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho ba điểm \(A(1;-2;3)\), \(B(4;2;3)\), \(C(3;4;3)\). Gọi \(\left(S_1\right),\,\left(S_2\right),\,\left(S_3\right)\) là các mặt cầu có tâm \(A,\,B,\,C\) và bán kính lần lượt là \(3,\,2,\,3\). Hỏi có bao nhiêu mặt phẳng qua điểm \(I\left(\dfrac{14}{5};\dfrac{2}{5};3\right)\) và tiếp xúc với cả ba mặt cầu \(\left(S_1\right),\,\left(S_2\right),\,\left(S_3\right)\)?
\(2\) | |
\(7\) | |
\(0\) | |
\(1\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\) có tâm \(I(3;2;-1)\) và đi qua điểm \(A(2;1;2)\). Mặt phẳng nào dưới đây tiếp xúc với \((S)\) tại \(A\)?
\(x+y-3z-8=0\) | |
\(x+y-3z+3=0\) | |
\(x+y+3z-9=0\) | |
\(x-y-3z+3=0\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2y-2z-1=0\) và mặt phẳng \((P)\colon2x+2y-2z+15=0\). Tính khoảng cách ngắn nhất giữa điểm \(M\in(S)\) và điểm \(N\in(P)\).
\(\dfrac{3\sqrt{3}}{2}\) | |
\(\dfrac{3\sqrt{2}}{3}\) | |
\(\dfrac{3}{2}\) | |
\(\dfrac{2}{3}\) |
Trong không gian \(Oxyz\), cho bốn điểm \(A(3;-2;-2)\), \(B(3;2;0)\), \(C(0;2;1)\) và \(D(-1;1;2)\). Mặt cầu tâm \(A\) và tiếp xúc với mặt phẳng \((BCD)\) có bán kính bằng
\(9\) | |
\(5\) | |
\(\sqrt{14}\) | |
\(\sqrt{13}\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-1)^2+(y-2)^2+(z+1)^2=6\) tiếp xúc với hai mặt phẳng \((P)\colon x+y+2z+5=0\), \((Q)\colon2x-y+z-5=0\) lần lượt tại các điểm \(A,\,B\). Độ dài đoạn thẳng \(AB\) bằng
\(3\sqrt{2}\) | |
\(2\sqrt{6}\) | |
\(2\sqrt{3}\) | |
\(\sqrt{3}\) |
Trong không gian \(Oxyz\), cho điểm \(I(2;-1;-1)\) và mặt phẳng \((P)\colon x-2y-2z+3=0\). Viết phương trình mặt cầu \((S)\) có tâm \(I\) và tiếp xúc với mặt phẳng \((P)\).
\((S)\colon x^2+y^2+z^2-2x+y+z-3=0\) | |
\((S)\colon x^2+y^2+z^2-4x+2y+2z-3=0\) | |
\((S)\colon x^2+y^2+z^2-2x+y+z+1=0\) | |
\((S)\colon x^2+y^2+z^2-4x+2y+2z+1=0\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\) có tâm \(I(a;b;c)\) bán kính \(R=1\), và tiếp xúc với mặt phẳng \((Oxz)\). Khẳng định nào sau đây đúng?
\(|a|=1\) | |
\(a+b+c=1\) | |
\(|b|=1\) | |
\(|c|=1\) |
Trong không gian \(Oxyz\), cho đường tròn \((\mathscr{C})\) có tâm \(H(-1;1;1)\), bán kính \(r=2\) nằm trên mặt phẳng \((P)\colon x-2y+2z+1=0\). Diện tích của mặt cầu có tâm thuộc mặt phẳng \((Q)\colon x+y+z=0\) và chứa đường tròn \((C)\) bằng
\(26\pi\) | |
\(2\pi\) | |
\(52\pi\) | |
\(40\pi\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\) có đường kính \(AB\), với \(A(6;2;-5)\), \(B(-4;0;7)\). Viết phương trình mặt phẳng \((P)\) tiếp xúc với \((S)\) tại điểm \(A\).
\((P)\colon5x+y-6z+62=0\) | |
\((P)\colon5x+y-6z-62=0\) | |
\((P)\colon5x-y-6z-62=0\) | |
\((P)\colon5x+y+6z+62=0\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=4$ và đường thẳng $d$ đi qua điểm $A(1;0;-2)$, nhận $\overrightarrow{u}=(1;a;1-a)$ (với $a\in\mathbb{R}$) làm vectơ chỉ phương. Biết rằng $d$ cắt $(S)$ tại hai điểm phân biệt mà các tiếp diện của $(S)$ tại hai điểm đó vuông góc với nhau. Hỏi $a^2$ thuộc khoảng nào dưới đây?
$\left(\dfrac{1}{2};\dfrac{3}{2}\right)$ | |
$\left(\dfrac{3}{2};2\right)$ | |
$\left(7;\dfrac{15}{2}\right)$ | |
$\left(0;\dfrac{1}{4}\right)$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng
$2\sqrt{2}$ | |
$2+2\sqrt{2}$ | |
$-2\sqrt{2}$ | |
$4+\sqrt{2}$ |