$\displaystyle\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng
![]() | $0$ |
![]() | $1$ |
![]() | $3$ |
![]() | $\dfrac{1}{3}$ |
Cho $\lim\limits_{x\to x_0^+}f(x)=5$, $\lim\limits_{x\to x_0^-}f(x)=-5$. Chọn khẳng định đúng.
![]() | $\lim\limits_{x\to x_0}f(x)=\pm5$ |
![]() | $\lim\limits_{x\to x_0}f(x)=5$ |
![]() | $\lim\limits_{x\to x_0}f(x)=-5$ |
![]() | Không tồn tại $\lim\limits_{x\to x_0}f(x)$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và $\lim\limits_{x\to1}\dfrac{f(x)-3}{x^2-x}=2$. Tính $T=\lim\limits_{x\to1}\dfrac{f^2(x)+f(x)-12}{x^2+6x-7}$.
![]() | $P=\dfrac{9}{4}$ |
![]() | $P=\dfrac{13}{4}$ |
![]() | $T=\dfrac{5}{4}$ |
![]() | $T=\dfrac{7}{4}$ |
Tính giới hạn $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}$.
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=\dfrac{11}{2}$ |
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=-\dfrac{11}{2}$ |
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=11$ |
![]() | $\lim\limits_{x\to1}\dfrac{4x+7}{2x-3}=-11$ |
Cho $\lim\limits_{x\to2}f(x)=3$. Tính giới hạn $B=\lim\limits_{x\to2}\big(4x+5-2f(x)\big)$.
![]() | $B=6$ |
![]() | $B=11$ |
![]() | $B=7$ |
![]() | $B=0$ |
Tính các giới hạn sau:
Kết quả của $\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{x-2}$ bằng
![]() | $+\infty$ |
![]() | $-\infty$ |
![]() | $0$ |
![]() | $4$ |
Biết rằng khi $m=m_0$ thì $\lim\limits_{x\rightarrow2}\dfrac{x^2+mx+2}{x-2}=1$. Số $m_0$ thuộc khoảng nào sau đây?
![]() | $(-2;0)$ |
![]() | $(0;2)$ |
![]() | $(-4;-2)$ |
![]() | $(2;4)$ |
Giá trị của $\lim\limits_{x\rightarrow-1}(4-3x)$ bằng
![]() | $-7$ |
![]() | $-1$ |
![]() | $7$ |
![]() | $1$ |
$\lim\limits_{x\to0}\dfrac{\mathrm{e}^x-1}{3x}$ bằng
![]() | $0$ |
![]() | $1$ |
![]() | $3$ |
![]() | $\dfrac{1}{3}$ |
Giá trị nhỏ nhất của hàm số $y=\dfrac{2\sin x+3}{\sin x+1}$ trên $\left[0;\dfrac{\pi}{2}\right]$ là
![]() | $5$ |
![]() | $2$ |
![]() | $3$ |
![]() | $\dfrac{5}{2}$ |
Số giờ có ánh sáng mặt trời của một thành phố $X$ ở vĩ độ $40^{\circ}$ Bắc trong ngày thứ $t$ của năm 2015 được cho bởi hàm số $y=2\sin\left[\dfrac{\pi}{180}(t-70)\right]+13$ với $t\in\mathbb{Z}$ và $0< t\leq365$. Thành phố $X$ có đúng $11$ giờ có ánh sáng mặt trời vào ngày thứ bao nhiêu trong năm?
![]() | $300$ |
![]() | $70$ |
![]() | $180$ |
![]() | $340$ |
Giá trị lớn nhất $M$, giá trị nhỏ nhất $m$ của hàm số $y=\sin^2x+2\sin x+5$ là
![]() | $M=8;\,m=5$ |
![]() | $M=5;\,m=2$ |
![]() | $M=8;\,m=4$ |
![]() | $M=8;\,m=2$ |
Hàm số $y=\sin2x$ là hàm số tuần hoàn với chu kỳ là
![]() | $3\pi$ |
![]() | $\dfrac{\pi}{2}$ |
![]() | $2\pi$ |
![]() | $\pi$ |
Xác định chu kỳ của hàm số $y=\sin x$.
![]() | $2\pi$ |
![]() | $\dfrac{3\pi}{2}$ |
![]() | $\dfrac{\pi}{2}$ |
![]() | $\pi$ |
Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
![]() | $(2;+\infty)$ |
![]() | $\mathbb{R}\setminus\{2\}$ |
![]() | $\mathbb{R}$ |
![]() | $[2;+\infty)$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
![]() | $\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ |
![]() | $\{k2\pi,\,k\in\mathbb{Z}\}$ |
![]() | $\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là
![]() | $\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$ |
![]() | $\mathscr{D}=(-1;+\infty)$ |
![]() | $\mathscr{D}=\mathbb{R}$ |
![]() | $\mathscr{D}=\mathbb{R}\setminus\{-1\}$ |
Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.
![]() | $\dfrac{7\pi}{6}+1$ |
![]() | $\dfrac{9\pi}{8}+1$ |
![]() | $\dfrac{7\pi}{6}+2$ |
![]() | $\dfrac{9\pi}{8}+2$ |