Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).
Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
$\dfrac{\sqrt{3}}{3}a$ | |
$\sqrt{2}a$ | |
$\dfrac{2\sqrt{3}}{3}a$ | |
$\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, $AB=2a$ và $SA$ vuông góc với mặt phẳng đáy. Khoảng cách từ $C$ đến mặt phẳng $(SAB)$ bằng
$\sqrt2a$ | |
$2a$ | |
$a$ | |
$2\sqrt2a$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình chữ nhật và $SA\bot (ABCD)$. Mệnh đề nào dưới đây đúng?
$AB\bot(SAD)$ | |
$BC\bot(SAD)$ | |
$AC\bot(SAD)$ | |
$BD\bot(SAD)$ |
Cho hình chóp tứ giác đều $S.ABCD$ có độ dài cạnh đáy bằng $2$ và độ dài cạnh bên bằng $3$ (tham khảo hình bên).
Khoảng cách từ $S$ đến mặt phẳng $(ABCD)$ bằng
$\sqrt{7}$ | |
$1$ | |
$7$ | |
$\sqrt{11}$ |
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a\), \(BC=a\), \(SA\) vuông góc với mặt đáy và cạnh bên \(SC\) hợp với đáy một góc \(30^\circ\). Tính thể tích \(V\) của khối chóp theo \(a\).
Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\). Biết \(AC=a\), \(BC=\dfrac{a}{2}\), \(SA=\dfrac{a\sqrt{3}}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng
\(\dfrac{a\sqrt{6}}{4}\) | |
\(a\sqrt{6}\) | |
\(\dfrac{a\sqrt{3}}{2}\) | |
\(\dfrac{a\sqrt{6}}{2}\) |
Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=2a$. Thể tích của khối tứ diện $SBCD$ là
$\dfrac{a^3}{3}$ | |
$\dfrac{a^3}{4}$ | |
$\dfrac{a^3}{6}$ | |
$\dfrac{a^3}{8}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA$ vuông góc với mặt phẳng đáy và $SA=9a$. Thể tích khối chóp $S.ABCD$ bằng
$a^3$ | |
$27a^3$ | |
$9a^3$ | |
$3a^3$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.
Khẳng định nào sau đây là đúng?
$BC\perp(SAB)$ | |
$BC\perp(SBD)$ | |
$BC\perp(SCD)$ | |
$BC\perp(SAC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, $SA$ vuông góc mặt đáy. Hình chiếu vuông góc của $SB$ lên $(ABCD)$ là
$CB$ | |
$DB$ | |
$AB$ | |
$SA$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $B$, $AB=BC=1$, $AD=2$. Cạnh bên $SA=2$ và vuông góc với mặt đáy. Tính thể tích khối chóp $S.ABCD$.
$V=1$ | |
$V=\dfrac{\sqrt{3}}{2}$ | |
$V=\dfrac{1}{3}$ | |
$V=2$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$. Cạnh bên $SA$ vuông góc với mặt đáy và $SC=a\sqrt{5}$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABCD$.
$V=\dfrac{a^3\sqrt{3}}{3}$ | |
$V=\dfrac{a^3\sqrt{3}}{6}$ | |
$V=a^3\sqrt{3}$ | |
$V=\dfrac{a^3\sqrt{15}}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật có cạnh $AB=a$, $BC=2a$. Hai mặt bên $(SAB)$ và $(SAD)$ cùng vuông góc với mặt phẳng đáy $(ABCD)$, cạnh bên $SA=a\sqrt{15}$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABCD$.
$V=\dfrac{2a^3\sqrt{15}}{6}$ | |
$V=\dfrac{2a^3\sqrt{15}}{3}$ | |
$V=2a^3\sqrt{15}$ | |
$V=\dfrac{a^3\sqrt{15}}{3}$ |