Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{6}f(x)\mathrm{\,d}x=7$, $\displaystyle\displaystyle\int\limits_{3}^{10}f(x)\mathrm{\,d}x=8$, $\displaystyle\displaystyle\int\limits_{3}^{6}f(x)\mathrm{\,d}x=9$. Giá trị của $I=\displaystyle\displaystyle\int\limits_{0}^{10}f(x)\mathrm{\,d}x$ bằng
$8$ | |
$6$ | |
$7$ | |
$5$ |
Cho hàm số \(f(x)\) liên tục trên đoạn \([0;10]\) thỏa mãn \(\displaystyle\int\limits_{0}^{10}f(x)\mathrm{\,d}x=7\) và \(\displaystyle\int\limits_{2}^{6}f(x)\mathrm{\,d}x=3\). Tính \(P=\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{6}^{10}f(x)\mathrm{\,d}x\).
\(P=4\) | |
\(P=10\) | |
\(P=-6\) | |
\(P=7\) |
Cho hàm số \(y=f(x)\) liên tục trên \([0;10]\), thỏa mãn \(\displaystyle\int\limits_{0}^{10}f(x)\mathrm{\,d}x=7\) và \(\displaystyle\int\limits_{2}^{6} f(x)\mathrm{\,d}x=3\). Tính giá trị biểu thức \(P=\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x + \displaystyle\int\limits_{6}^{10} f(x)\mathrm{\,d}x\).
\(P=4\) | |
\(P=2\) | |
\(P=3\) | |
\(P=10\) |
Cho \(f(x)\) là một hàm số liên tục trên \([-2;5]\) và \(\displaystyle\int\limits_{-2}^5f(x)\mathrm{\,d}x=8\), \(\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x=-3\). Tính \(P=\displaystyle\int\limits_{-2}^1f(x)\mathrm{\,d}x+\displaystyle\int\limits_{3}^5f(x)\mathrm{\,d}x\).
\(P=5\) | |
\(P=-11\) | |
\(P=11\) | |
\(P=-5\) |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.
$I=20$ | |
$I=8$ | |
$I=18$ | |
$I=16$ |
Nếu $\displaystyle\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x=2$, $\displaystyle\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=-1$ thì $\displaystyle\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x$ bằng
$-3$ | |
$1$ | |
$-2$ | |
$3$ |
Cho hàm số $f\left(x\right)$ liên tục trên $\mathbb{R}$ và có $\displaystyle\displaystyle\int\limits_{0}^{1}f\left(x\right)\mathrm{d}x=2$; $\displaystyle\displaystyle\int\limits_{1}^{3}f\left(x\right)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{3}f\left(x\right)\mathrm{d}x$.
$I=8$ | |
$I=12$ | |
$I=36$ | |
$I=4$ |
Cho hai hàm số $f(x)$, $g(x)$ liên tục trên đoạn $[a;b]$ và $a< c< b$. Mệnh đề nào dưới đây sai?
$\displaystyle\displaystyle\int\limits_a^b\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\limits_a^b k\cdot f(x)\mathrm{\,d}x= k\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$ với $k$ là hằng số | |
$\displaystyle\displaystyle\int\limits_a^b \dfrac{f(x)}{g(x)}\mathrm{\,d}x=\dfrac{\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x}{\displaystyle\displaystyle\int\limits_a^b g(x)\mathrm{\,d}x}$ | |
$\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=\displaystyle\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x$ |
Nếu $\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x=5$ và $\displaystyle\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x=-2$ thì $\displaystyle\displaystyle\int\limits_{1}^{3}f(x)\mathrm{\,d}x$ bằng
$3$ | |
$7$ | |
$-10$ | |
$-7$ |
Cho \(\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x=-1\), \(\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=5\). Tính \(\displaystyle\int\limits_{1}^{3}f(x)\mathrm{\,d}x\).
\(5\) | |
\(4\) | |
\(1\) | |
\(6\) |
Cho hàm số \(f(x),\,g(x)\) liên tục trên \([a;b]\). Khẳng định nào sau đây sai?
\(\displaystyle\int\limits_{a}^{b}\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{a}^{b}g(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{b}^{a}f(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t\) | |
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x\) |
Cho \(\displaystyle\int\limits_{-1}^2f(x)\mathrm{\,d}x=5\) và \(\displaystyle\int\limits_0^2f(x)\mathrm{\,d}x=2\). Tính \(I=\displaystyle\int\limits_{-1}^0f(x)\mathrm{\,d}x\).
\(I=7\) | |
\(I=-3\) | |
\(I=3\) | |
\(I=1\) |
Cho hàm số \(f(x)\) liên tục trên đoạn \([a;b]\) và \(a< c< b\). Mệnh đề nào dưới đây sai?
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x=\displaystyle\int\limits_b^c f(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_a^c f(x)\mathrm{\,d}x+\displaystyle\int\limits_c^b f(x)\mathrm{\,d}x=\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x=-\displaystyle\int\limits_b^a f(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x+\displaystyle\int\limits_b^a f(x)\mathrm{\,d}x=0\) |
Cho đồ thị hàm số \(y=h(x)\). Diện tích hình phẳng (phần gạch chéo trong hình vẽ) bằng
\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{-1}^{1}h(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{0}h(x)\mathrm{\,d}x\) | |
\(-\displaystyle\int\limits_{-1}^{0}h(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{1}h(x)\mathrm{\,d}x\) |
Biết \(\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x=2\) và \(\displaystyle\int\limits_{1}^{3}f(x)\mathrm{\,d}x=3\). Kết quả \(\displaystyle\int\limits_{3}^{2}f(x)\mathrm{\,d}x\) bằng bao nhiêu?
\(3\) | |
\(\dfrac{5}{2}\) | |
\(-1\) | |
\(1\) |
Với \(a\neq0\). Cho biểu thức \(B=\displaystyle\int\limits_{-1}^{1}ax^2\mathrm{\,d}x\). Khẳng định nào sau đây sai?
\(B=a\displaystyle\int\limits_{-1}^{1}x^2\mathrm{\,d}x\) | |
\(B=-\displaystyle\int\limits_{1}^{-1}ax^2\mathrm{\,d}x\) | |
\(B=\displaystyle\int\limits_{1}^{0}ax^2\mathrm{\,d}x+\displaystyle\int\limits_{0}^{-1}ax^2\mathrm{\,d}x\) | |
\(B=\dfrac{2a}{3}\) |
Giả sử hàm số \(f\) liên tục trên khoảng \(\mathbb{K}\) và \(a,\,b,\,c\) là \(3\) số thực bất kỳ thuộc \(\mathbb{K}\). Khẳng định nào sau đây sai?
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x\neq\displaystyle\int\limits_{a}^{b}f(t)\mathrm{\,d}t\) | |
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=-\displaystyle\int\limits_{b}^{a}f(t)\mathrm{\,d}t\) | |
\(\displaystyle\int\limits_{a}^{a}f(x)\mathrm{\,d}x=0\) | |
\(\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x=\displaystyle\int\limits_{a}^{c}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{c}^{b}f(x)\mathrm{\,d}x\;\left(c\in(a;b)\right)\) |
Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị các hàm số \(y=|x|\) và \(y=x^2-2\).
\(S=\dfrac{20}{3}\) | |
\(S=\dfrac{11}{2}\) | |
\(S=3\) | |
\(S=\dfrac{13}{3}\) |
Cho \(f(x)\) là hàm số chẵn trên \(\mathbb{R}\) thỏa mãn \(\displaystyle\int\limits_{-3}^{0}f(x)\mathrm{\,d}x=2\). Chọn mệnh đề đúng.
\(\displaystyle\int\limits_{-3}^{3}f(x)\mathrm{\,d}x=4\) | |
\(\displaystyle\int\limits_{3}^{0}f(x)\mathrm{\,d}x=2\) | |
\(\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=-2\) | |
\(\displaystyle\int\limits_{-3}^{3}f(x)\mathrm{\,d}x=2\) |
Nếu \(\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x=-2\) và \(\displaystyle\int\limits_2^3f(x)\mathrm{\,d}x=1\) thì \(\displaystyle\int\limits_1^3f(x)\mathrm{\,d}x\) bằng
\(-3\) | |
\(-1\) | |
\(1\) | |
\(3\) |