Cho hàm số $y=f\left(x\right)$ liên tục trên $\mathbb{R}\setminus\left\{0;-1\right\}$ thỏa mãn điều kiện $f\left(1\right)=-2\ln2$ và $x\left(x+1\right)\cdot f'\left(x\right)+f\left(x\right)=x^2+x$. Giá trị $f\left(2\right)=a+b\ln3$, với $a,\,b\in\mathbb{Q}$. Tính $a^2+b^2$.
Cho biết $$\displaystyle\int\dfrac{2x-13}{(x+1)(x-2)}\mathrm{\,d}x=a\ln|x+1|+b\ln|x-2|+C$$Mệnh đề nào sau đây đúng?
\(a-b=8\) | |
\(2a-b=8\) | |
\(a+2b=8\) | |
\(a+b=8\) |
Nguyên hàm của hàm số \(f(x)=\dfrac{2x^2+1}{x}\) là
\(x^2+\ln|x|\) | |
\(x^2+\ln x+C\) | |
\(x^2-\ln|x|+C\) | |
\(x^2+\ln|x|+C\) |
Biết \(F(x)\) là nguyên hàm của hàm số \(f(x)=\dfrac{1}{x-1}\) và \(F(2)=1\). Khi đó \(F(3)\) bằng bao nhiêu?
\(\ln\dfrac{3}{2}\) | |
\(\ln2+1\) | |
\(\ln2\) | |
\(\dfrac{1}{2}\) |
Hàm số nào dưới đây là nguyên hàm của hàm số \(f(x)=\dfrac{1}{1-x}\)?
\(F(x)=-\dfrac{1}{4}\ln|4-4x|+3\) | |
\(F(x)=-\ln|1-x|+4\) | |
\(F(x)=\ln|1-x|+2\) | |
\(F(x)=\dfrac{1}{2}\ln\left(x^2-2x+1\right)+5\) |
Họ tất cả các nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x+2}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) là
\(x+3\ln\left(x-1\right)+C\) | |
\(x-3\ln\left(x-1\right)+C\) | |
\(x+\dfrac{3}{\left(x-1\right)^2}+C\) | |
\(x-\dfrac{3}{\left(x-1\right)^2}+C\) |
Họ nguyên hàm \(\displaystyle\int\dfrac{x^3-2x^2+5}{x^2}\mathrm{\,d}x\) là
\(\dfrac{x^2}{2}-2x-\dfrac{5}{x}+C\) | |
\(-2x+\dfrac{5}{x}+C\) | |
\(x^2-2x-\dfrac{5}{x}+C\) | |
\(x^2-x-\dfrac{5}{x}+C\) |
Biết rằng \(F(x)\) là nguyên hàm của hàm số \(f(x)=\dfrac{3x+4}{x^2}\) sao cho \(F(1)=1\). \(F(x)\) là biểu thức nào sau đây:
\(F(x)=2x+\dfrac{4}{x}-5\) | |
\(F(x)=3\ln\left|x\right|-\dfrac{4}{x}+5\) | |
\(F(x)=3x-\dfrac{4}{x}+3\) | |
\(F(x)=3\ln\left|x\right|-\dfrac{4}{x}+3\) |
Tìm nguyên hàm \(F(x)\) của hàm số \(f(x)=\dfrac{x-1}{x^2}\), biết đồ thị hàm số \(y=F(x)\) đi qua điểm \((1;-2)\).
\(F(x)=\ln\left|x\right|+\dfrac{1}{x}+3\) | |
\(F(x)=\ln\left|x\right|-\dfrac{1}{x}+1\) | |
\(F(x)=\ln\left|x\right|-\dfrac{1}{x}-1\) | |
\(F(x)=\ln\left|x\right|+\dfrac{1}{x}-3\) |
Tìm họ nguyên hàm của hàm số \(f(x)=\dfrac{5+2x^4}{x^2}\).
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2x^3}{3}-\dfrac{5}{x}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=2x^3-\dfrac{5}{x}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2x^3}{3}+\dfrac{5}{x}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2x^3}{3}+5\ln x^2+C\) |
Tìm họ nguyên hàm của hàm số \(f(x)=\dfrac{2x^2+x-1}{x^2}\).
\(\displaystyle\int\dfrac{2x^2+x-1}{x^2}\mathrm{\,d}x=2+\dfrac{1}{x}-\dfrac{1}{x^2}+\mathrm{C}\) | |
\(\displaystyle\int\dfrac{2x^2+x-1}{x^2}\mathrm{\,d}x=2x+\dfrac{1}{x}+\ln|x|+\mathrm{C}\) | |
\(\displaystyle\int\dfrac{2x^2+x-1}{x^2}\mathrm{\,d}x=x^2+\ln|x|+\dfrac{1}{x}+\mathrm{C}\) | |
\(\displaystyle\int\dfrac{2x^2+x-1}{x^2}\mathrm{\,d}x=x^2-\dfrac{1}{x}+\ln|x|+\mathrm{C}\) |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng
$\dfrac{25}{6}$ | |
$\dfrac{7}{6}$ | |
$\dfrac{43}{6}$ | |
$3$ |
Tính tích phân $\displaystyle\int\limits_{1}^{2}\left(x^2+4x+\dfrac{4}{x^2}\right)\mathrm{\,d}x$.
Tính các giới hạn sau:
Cho hàm số $f(x)=1-\dfrac{1}{\cos^22x}$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\tan2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\cot2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\dfrac{1}{2}\tan2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\tan2x+C$ |
Cho hàm số $f(x)=\mathrm{e}^x+2x$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+x^2+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x-x^2+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^x+2x^2+C$ |
Cho $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cos x+C$. Khẳng định nào dưới đây đúng?
$f(x)=-\sin x$ | |
$f(x)=-\cos x$ | |
$f(x)=\sin x$ | |
$f(x)=\cos x$ |