Ngân hàng bài tập

Bài tập tương tự

SS

Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng

$\dfrac{1073}{15}$
$\dfrac{458}{15}$
$\dfrac{838}{15}$
$\dfrac{1016}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.

$f(5)=2020-\dfrac{1}{2}\ln2$
$f(5)=2021-\ln2$
$f(5)=2021+\ln2$
$f(5)=2020+\ln2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ là hàm liên tục có tích phân trên $[0;2]$ thỏa điều kiện $f\left(x^2\right)=6x^4+\displaystyle\displaystyle\int\limits_{0}^{2}xf(x)\mathrm{\,d}x$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$.

$I=-8$
$I=-24$
$I=-32$
$I=-6$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=3x^2-2x+3+4\displaystyle\int\limits_{0}^{1}xf\left(x^2\right)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{2}^{3}f(x)\mathrm{\,d}x$ bằng

$17$
$11$
$14$
$21$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=x^2-3x+2\displaystyle\int\limits_{0}^{1}f(x)f'(x)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$ bằng

$\dfrac{10}{3}$
$-\dfrac{10}{3}$
$\dfrac{26}{15}$
$-\dfrac{26}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $f(x)=\sin x+2\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\cos x\cdot f(x)\mathrm{\,d}x$. Giá trị $f\left(-\dfrac{\pi}{2}\right)$ bằng

$-\pi$
$-1$
$-2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ xác định và liên tục trên đoạn $[0;1]$ thỏa mãn $f(x)=x^3+\displaystyle\int\limits_{0}^{1}x^3f\left(x^2\right)\mathrm{\,d}x$, $\forall x\in[0;1]$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.

$\dfrac{1}{4}$
$\dfrac{4}{15}$
$\dfrac{13}{20}$
$\dfrac{23}{60}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số $f(x)$ thỏa mãn $f(x)=x\mathrm{e}^x+\displaystyle\int\limits_{0}^{2}\left(f(x)+f'(x)-\mathrm{e}^x-1\right)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.

$2\mathrm{e}^2-1$
$-2\mathrm{e}^2-1$
$-2\mathrm{e}^2+1$
$2\mathrm{e}^2+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ xác định và liên tục trên $[0;+\infty)$ thỏa mãn $f(x)=x\sqrt{x}+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{4}f(x)\mathrm{\,d}x$.

$\dfrac{528}{35}$
$\dfrac{488}{35}$
$\dfrac{408}{35}$
$\dfrac{368}{35}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ xác định và liên tục trên khoảng $(0;+\infty)$ thỏa mãn $f(x)=\dfrac{1}{x}+\displaystyle\int\limits_{1}^{2}xf(x)\mathrm{\,d}x$, $\forall x\in(0;+\infty)$. Tính tích phân $\displaystyle\int\limits_{1}^{\mathrm{e}}f(x)\mathrm{\,d}x$.

$\dfrac{5-2\mathrm{e}}{3}$
$3-2\mathrm{e}$
$2+2\mathrm{e}$
$1-2\mathrm{e}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét hàm số $f(x)=\mathrm{e}^x+\displaystyle\int\limits_{0}^{1}xf(x)\mathrm{\,d}x$. Giá trị $f\left(\ln5620\right)$ bằng

$5622$
$5620$
$5618$
$5621$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục, thỏa mãn $f(x)=x\left(1+\dfrac{1}{\sqrt{x}}-f'(x)\right)$, $\forall x\in(0;+\infty)$ và $f(4)=\dfrac{4}{3}$. Giá trị của $\displaystyle\displaystyle\int\limits_{1}^{4}\left(x^2-1\right)f'(x)\mathrm{\,d}x$ bằng

$\dfrac{457}{15}$
$\dfrac{457}{30}$
$-\dfrac{263}{30}$
$-\dfrac{263}{15}$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hàm số \(f\left(x\right)\) có \(f\left(0\right)=0\) và \(f'\left(x\right)=\cos x\cdot\cos^22x\), \(\forall x\in\mathbb{R}\). Khi đó \(\displaystyle\int\limits_0^{\pi}f\left(x\right)\mathrm{\,d}x\) bằng

\(\dfrac{1042}{225}\)
\(\dfrac{208}{225}\)
\(\dfrac{242}{225}\)
\(\dfrac{149}{225}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?

\(4< f(5)<5\)
\(3< f(5)<4\)
\(1< f(5)<2\)
\(2< f(5)<3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Một ô tô đang chạy với vận tốc \(54\) km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc \(a(t)=3t-8\) (m/s\(^2\)) trong đó \(t\) là khoảng thời gian tính bằng giây. Quãng đường mà ô tô đi được sau \(10\) s kể từ lúc tăng tốc là

\(540\) m
\(150\) m
\(250\) m
\(246\) m
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(f\left(x\right)\) có \(f\left(3\right)=3\) và \(f'\left(x\right)=\dfrac{x}{x+1-\sqrt{x+1}}\), \(\forall x>0\). Khi đó \(\displaystyle\int\limits_3^8f\left(x\right)\mathrm{\,d}x\) bằng

\(7\)
\(\dfrac{197}{6}\)
\(\dfrac{29}{2}\)
\(\dfrac{181}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{x+1}+2x\), \(\forall x>-1\). Biết \(F(0)=0\). Giá trị \(F(1)\) bằng

\(3+\ln2\)
\(\ln2\)
\(2+\ln2\)
\(1+\ln2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=f(x)\) xác định trên \(\mathbb{R}\), có đạo hàm \(f'(x)=(x^2-1)x\) trên \(\mathbb{R}\) và thỏa mãn \(f(2)=0\). Tính \(\displaystyle\int\limits_0^1f(x)\mathrm{\,d}x\).

\(\dfrac{7}{60}\)
\(-\dfrac{127}{60}\)
\(\dfrac{113}{60}\)
\(-\dfrac{7}{60}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?

$4$
$2$
$1$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng

$\dfrac{7}{12}$
$\dfrac{45}{4}$
$\dfrac{1}{2}$
$\dfrac{71}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự