Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
$1$ | |
$3$ | |
$2$ | |
$4$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
$3$ | |
$1$ | |
$2$ | |
$0$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:
Số điểm cực trị của hàm số đã cho bằng
$3$ | |
$0$ | |
$1$ | |
$2$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
$3$ | |
$1$ | |
$2$ | |
$0$ |
Cho hàm số $f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu của $f'(x)$ như hình:
Hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
$5$ | |
$3$ | |
$2$ | |
$4$ |
Cho hàm số \(f\left(x\right)\) có bảng xét dấu của \(f'\left(x\right)\) như sau:
Số điểm cực trị của hàm số đã cho là
\(3\) | |
\(0\) | |
\(2\) | |
\(1\) |
Cho hàm số \(f\left(x\right)\), bảng xét dấu của \(f'\left(x\right)\) như sau:
Số điểm cực trị của hàm số đã cho là
\(0\) | |
\(2\) | |
\(1\) | |
\(3\) |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
$3$ | |
$4$ | |
$1$ | |
$2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là
$5$ | |
$3$ | |
$8$ | |
$2$ |
Cho hàm số $f(x)$, bảng biến thiên của hàm số $f'(x)$ như sau:
Số điểm cực trị của hàm số $f\big(x^2-2x\big)$ là
$9$ | |
$3$ | |
$7$ | |
$5$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.
Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.
$5$ | |
$3$ | |
$7$ | |
$11$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Hàm số $g(x)=f(x)-\dfrac{x^3}{3}+x^2-x+2$ có bao nhiêu điểm cực trị?
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Hàm số $g(x)=2f(x)+x^2$ có bao nhiêu điểm cực trị?
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Hàm số $g(x)=f(x)+3x$ có bao nhiêu điểm cực trị?
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Tìm số điểm cực trị của hàm số $g(x)=f(x)-x$.
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Số điểm cực trị của hàm số $y=f(x)+2x$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có bảng xét dấu đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
$4$ | |
$-2$ | |
$2$ | |
$5$ |
Cho hàm số $f(x)$, biết $f'(x)$ có đồ thị như hình bên.
Số điểm cực trị của hàm số $f(x)$ là
$2$ | |
$1$ | |
$3$ | |
$0$ |
Cho $f(x)$ là hàm số bậc bốn thỏa mãn $f(0)=0$. Hàm số $f'(x)$ có bảng biến thiên như sau:
Hàm số $g(x)=\left|f\left(x^3\right)-3x\right|$ có bao nhiêu điểm cực trị?
$3$ | |
$5$ | |
$4$ | |
$2$ |