Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1;4\}$ có $f'(x)=\dfrac{2x-5}{x^2-5x+4}$ thỏa mãn $f(3)=1$. Giá trị $f(2)$ bằng
![]() | $1$ |
![]() | $-1+3\ln2$ |
![]() | $1+3\ln2$ |
![]() | $1-\ln2$ |
Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).
![]() | \(f(1)=8-2\mathrm{e}\) |
![]() | \(f(1)=\mathrm{e}\) |
![]() | \(f(1)=3\) |
![]() | \(f(1)=5-2\mathrm{e}\) |
Cho hàm số $f(x)=\begin{cases}2x+5 &\text{khi }x\ge1\\ 3x^2+4 &\text{khi }x< 1\end{cases}$. Giả sử $F$ là nguyên hàm của $f$ trên $\mathbb{R}$ thỏa mãn $F(0)=2$. Giá trị của $F(-1)+2F(2)$ bằng
![]() | $27$ |
![]() | $29$ |
![]() | $12$ |
![]() | $33$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
![]() | $f(5)=2020-\dfrac{1}{2}\ln2$ |
![]() | $f(5)=2021-\ln2$ |
![]() | $f(5)=2021+\ln2$ |
![]() | $f(5)=2020+\ln2$ |
Cho hàm số $y=f\left(x\right)$ liên tục trên $\mathbb{R}\setminus\left\{0;-1\right\}$ thỏa mãn điều kiện $f\left(1\right)=-2\ln2$ và $x\left(x+1\right)\cdot f'\left(x\right)+f\left(x\right)=x^2+x$. Giá trị $f\left(2\right)=a+b\ln3$, với $a,\,b\in\mathbb{Q}$. Tính $a^2+b^2$.
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
![]() | $f\left(x\right)=3x+5\sin x+2$ |
![]() | $f\left(x\right)=3x-5\sin x-5$ |
![]() | $f\left(x\right)=3x-5\sin x+5$ |
![]() | $f\left(x\right)=3x+5\sin x+5$ |
Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng
![]() | $\dfrac{2}{3}$ |
![]() | $\dfrac{3}{2}$ |
![]() | $\dfrac{16}{3}$ |
![]() | $\dfrac{3}{16}$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x+3}$ và $F(0)=0$. Tính $F(2)$.
![]() | $F(2)=\ln\dfrac{7}{3}$ |
![]() | $F(2)=-\dfrac{1}{2}\ln3$ |
![]() | $F(2)=\dfrac{1}{2}\ln\dfrac{7}{3}$ |
![]() | $F(2)=\ln21$ |
Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.
![]() | $F(3)=\dfrac{7}{4}$ |
![]() | $F(3)=\ln2+1$ |
![]() | $F(3)=\dfrac{1}{2}$ |
![]() | $F(3)=\ln2-1$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
![]() | $F\left(\dfrac{\pi}{6}\right)=0$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ |
![]() | $F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
![]() | \(3< f(5)<4\) |
![]() | \(2< f(5)<3\) |
![]() | \(1< f(5)<2\) |
![]() | \(4< f(5)<5\) |
Cho \(F(x)\) là một nguyên hàm của hàm số \(f(x)=\dfrac{1}{2x+1}\), biết \(F(0)=2\). Tính \(F(1)\).
![]() | \(F(1)=\dfrac{1}{2}\ln3+2\) |
![]() | \(F(1)=\ln3+2\) |
![]() | \(F(1)=2\ln3-2\) |
![]() | \(F(1)=\dfrac{1}{2}\ln3-2\) |
\(F(x)\) là một nguyên hàm của hàm số \(f(x)=\cot x\) và \(F\left(\dfrac{\pi}{2}\right)=0\). Giá trị của \(F\left(\dfrac{\pi}{6}\right)\) bằng
![]() | \(-\ln\left(\dfrac{\sqrt{3}}{2}\right)\) |
![]() | \(\ln\left(\dfrac{\sqrt{3}}{2}\right)\) |
![]() | \(\ln2\) |
![]() | \(-\ln2\) |
Biết \(F(x)\) là nguyên hàm của hàm số \(f(x)=\dfrac{1}{x-1}\) và \(F(2)=1\). Khi đó \(F(3)\) bằng bao nhiêu?
![]() | \(\ln\dfrac{3}{2}\) |
![]() | \(\ln2+1\) |
![]() | \(\ln2\) |
![]() | \(\dfrac{1}{2}\) |
Cho hàm số \(f\left(x\right)\) có \(f\left(3\right)=3\) và \(f'\left(x\right)=\dfrac{x}{x+1-\sqrt{x+1}}\), \(\forall x>0\). Khi đó \(\displaystyle\int\limits_3^8f\left(x\right)\mathrm{\,d}x\) bằng
![]() | \(7\) |
![]() | \(\dfrac{197}{6}\) |
![]() | \(\dfrac{29}{2}\) |
![]() | \(\dfrac{181}{6}\) |
Gọi \(F(x)\) là một nguyên hàm của \(f(x)=2x+\mathrm{e}^x\) thỏa mãn \(F(0)=2019\). Tính \(F(1)\).
![]() | \(\mathrm{e}+2018\) |
![]() | \(\mathrm{e}-2018\) |
![]() | \(\mathrm{e}+2019\) |
![]() | \(\mathrm{e}-2019\) |
Cho hàm số \(f(x)\) thỏa mãn đồng thời các điều kiện \(f'(x)=x+\sin x\) và \(f(0)=1\). Tìm \(f(x)\).
![]() | \(f(x)=\dfrac{x^2}{2}-\cos x+2\) |
![]() | \(f(x)=\dfrac{x^2}{2}-\cos x-2\) |
![]() | \(f(x)=\dfrac{x^2}{2}+\cos x\) |
![]() | \(f(x)=\dfrac{x^2}{2}+\cos x+\dfrac{1}{2}\) |
Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng
![]() | $\dfrac{1073}{15}$ |
![]() | $\dfrac{458}{15}$ |
![]() | $\dfrac{838}{15}$ |
![]() | $\dfrac{1016}{15}$ |
Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?
![]() | $f(x)=\dfrac{1}{2}x^2-\cos x$ |
![]() | $f(x)=1-\sin x$ |
![]() | $f(x)=1+\sin x$ |
![]() | $f(x)=\dfrac{1}{2}x^2+\sin x$ |