Cho hàm số $f(x)=x^3-2x^2+x+3$. Nghiệm của bất phương trình $f'(x)< 0$ là
$1< x< 3$ | |
$-1< x< \dfrac{1}{3}$ | |
$\dfrac{1}{3}< x< 1$ | |
$-\dfrac{1}{3}< x< 1$ |
Cho hàm số \(y=3x^3+x^2+1\) có đạo hàm \(y'\). Để \(y'\leq0\) thì \(x\) nhận các giá trị thuộc tập nào sau đây?
\(\left[-\dfrac{2}{9};0\right]\) | |
\(\left[-\dfrac{9}{2};0\right]\) | |
\(\left(-\infty;-\dfrac{9}{2}\right]\cup\left[0;+\infty\right)\) | |
\(\left(-\infty;-\dfrac{2}{9}\right]\cup\left[0;+\infty\right)\) |
Giá trị nhỏ nhất của hàm số $y=x^3+3x^2-1$ trên đoạn $[-1;1]$ bằng
$3$ | |
$-1$ | |
$1$ | |
$2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
$m\geq2$ | |
$m\leq2$ | |
$m=2$ | |
$m>2$ |
Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.
$m=-4$ | |
$m=-2$ | |
$m=2$ | |
$m=4$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.
$m=0$ | |
$m=\pm\dfrac{9}{2}$ | |
$m=\pm\dfrac{3}{2}$ | |
$m=\pm\dfrac{1}{2}$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.
$m=0$ | |
$m=\pm\dfrac{9}{2}$ | |
$m=\pm\dfrac{1}{2}$ | |
$m=\pm2$ |
Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.
$P=-4$ | |
$P=1$ | |
$P=-\dfrac{3}{2}$ | |
$P=-5$ |
Tìm giá trị của tham số $m$ để hàm số $y=x^3-3x^2+mx-1$ có hai điểm cực trị $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=6$.
$m=1$ | |
$m=-1$ | |
$m=3$ | |
$m=-3$ |
Đồ thị hàm số $y=x^3-3x^2-9x+1$ có hai điểm cực trị là $A$ và $B$. Điểm nào sau đây thuộc đường thẳng $AB$?
$M(0;-1)$ | |
$Q(-1;10)$ | |
$P(1;0)$ | |
$N(1;-10)$ |
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=-2x^3+3x^2+1$.
$y=x+1$ | |
$y=-x+1$ | |
$y=x-1$ | |
$y=-x-1$ |
Biết đồ thị hàm số $y=x^3-3x+1$ có hai điểm cực trị $A,\,B$. Khi đó đường thẳng $AB$ có phương trình
$y=2x-1$ | |
$y=x-2$ | |
$y=-x+2$ | |
$y=-2x+1$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
$\left(-\infty;-\dfrac{14}{15}\right)$ | |
$\left(-\infty;-\dfrac{14}{15}\right]$ | |
$\left[-2;-\dfrac{14}{15}\right]$ | |
$\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
$(-\infty;6]$ | |
$(-\infty;3]$ | |
$(-\infty;3)$ | |
$[3;6]$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
$2\ln3$ | |
$\ln3$ | |
$\ln18$ | |
$2\ln2$ |
Cho hàm số $y=f(x)=x^3$. Giải phương trình $f'(x)=3$.
$x=1,\,x=-1$ | |
$x=1$ | |
$x=-1$ | |
$x=\pm3$ |
Cho hàm số $y=f(x)=x^3-5x^2+2$ có đồ thị $(\mathscr{C})$. Có bao nhiêu tiếp tuyến của $(\mathscr{C})$ song song với đường thẳng $y=-7x$?
$3$ | |
$4$ | |
$2$ | |
$1$ |
Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?
$64$m/s | |
$46$m/s | |
$56$m/s | |
$22$m/s |