Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
$m=5$ | |
$m=\dfrac{5}{6}$ | |
$m=-5$ | |
$m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
$3< m\leq4$ | |
$1\leq m<3$ | |
$m>4$ | |
$m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
$m=-4$ | |
$m=5$ | |
$m=1$ | |
$m=4$ |
Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.
Mệnh đề nào dưới đây đúng?
$y'< 0,\,\forall x\ne-1$ | |
$y'>0,\,\forall x\ne-1$ | |
$y'< 0,\,\forall x\in\mathbb{R}$ | |
$y'>0,\,\forall x\in\mathbb{R}$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
$y=-\dfrac{1}{3}x+\dfrac{1}{3}$ | |
$y=\dfrac{1}{3}x+\dfrac{11}{3}$ | |
$y=\dfrac{1}{3}x-\dfrac{11}{3}$ | |
$y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Cho hàm số $y=\dfrac{2x+1}{x-1}$ có đồ thị là $(\mathscr{C})$. Viết phương trình tiếp tuyến của $(\mathscr{C})$ biết tiếp tuyến vuông góc với đường thẳng có phương trình $x-3y+2019=0$.
Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.
$0$ | |
$-2$ | |
$2$ | |
$1$ |
Cho hàm số $f\left(x\right)=\dfrac{x-2}{x-1}$. Tìm $f'\left(x\right)$.
$f'\left(x\right)=\dfrac{1}{\left(x-1\right)^2}$ | |
$f'\left(x\right)=\dfrac{2}{\left(x-1\right)^2}$ | |
$f'\left(x\right)=\dfrac{-2}{\left(x-1\right)^2}$ | |
$f'\left(x\right)=\dfrac{-1}{\left(x-1\right)^2}$ |
Cho hàm số $f\left(x\right)=\dfrac{2x-1}{x+1}$ xác định trên $\mathbb{R}\setminus\left\{1\right\}$. Đạo hàm của hàm số $f\left(x\right)$ là
$f'\left(x\right)=\dfrac{1}{\left(x+1\right)^2}$ | |
$f'\left(x\right)=\dfrac{2}{\left(x+1\right)^2}$ | |
$f'\left(x\right)=\dfrac{-1}{\left(x+1\right)^2}$ | |
$f'\left(x\right)=\dfrac{3}{\left(x+1\right)^2}$ |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-2}{2x+1}\) vuông góc với đường thẳng \(y=-\dfrac{1}{5}x\) là
\(y=5x+3\) và \(y=5x-2\) | |
\(y=5x-8\) và \(y=5x-2\) | |
\(y=5x+8\) và \(y=5x-2\) | |
\(y=5x+8\) và \(y=5x+2\) |
Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).
\(y=-3x+1\), \(y=-3x-7\) | |
\(y=-3x-1\), \(y=-3x+11\) | |
\(y=-3x-1\) | |
\(y=-3x+11\), \(y=-3x+5\) |
Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).
\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) | |
\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) | |
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) | |
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là
\(x+4y-20=0\) | |
\(x+4y-5=0\) | |
\(4x+y-2=0\) | |
\(4x+y-5=0\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là
\(y=-x-3\) | |
\(y=x-1\) | |
\(y=-x+2\) | |
\(y=-x-1\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) tại điểm \(M(0;-1)\) là
\(y=3x+1\) | |
\(y=3x-1\) | |
\(y=-3x-1\) | |
\(y=-3x+1\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x+1}{x-5}\) tại điểm \(A(-1;0)\) có hệ số góc bằng
\(\dfrac{1}{6}\) | |
\(-\dfrac{1}{6}\) | |
\(\dfrac{6}{25}\) | |
\(-\dfrac{6}{25}\) |
Tìm đạo hàm của hàm số \(y=\sqrt{\dfrac{2x-1}{x+2}}\).
\(y'=\dfrac{5}{(2x-1)^2}\cdot\sqrt{\dfrac{x+2}{2x-1}}\) | |
\(y'=\dfrac{5}{2(2x-1)^2}\cdot\sqrt{\dfrac{x+2}{2x-1}}\) | |
\(y'=\dfrac{1}{2}\sqrt{\dfrac{x+2}{2x-1}}\) | |
\(y'=\dfrac{5}{2(x+2)^2}\cdot\sqrt{\dfrac{x+2}{2x-1}}\) |
Đạo hàm của hàm số \(y=\dfrac{x+6}{x+9}\) là
\(y'=\dfrac{3}{(x+9)^2}\) | |
\(y'=-\dfrac{3}{(x+9)^2}\) | |
\(y'=\dfrac{15}{(x+9)^2}\) | |
\(y'=-\dfrac{15}{(x+9)^2}\) |
Tính đạo hàm của hàm số \(f(x)=\dfrac{2x}{x-1}\) tại điểm \(x=-1\).
\(f'(-1)=1\) | |
\(f'(-1)=-\dfrac{1}{2}\) | |
\(f'(-1)=-2\) | |
\(f'(-1)=0\) |