Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).
![]() | $3$(A) |
![]() | $25$(A) |
![]() | $10$(A) |
![]() | $2$(A) |
Phương trình tiếp tuyến của đồ thị hàm số $y=\dfrac{1}{2}x^2-2x+1$ biết tiếp tuyến song song với đường thẳng $y=2x+3$ là
![]() | $y=2x+5$ |
![]() | $y=3x+5$ |
![]() | $y=-2x+7$ |
![]() | $y=2x–7$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-3x^2+x+3$ $(\mathscr{P})$ tại điểm $M(1;1)$.
![]() | $y=-5x+6$ |
![]() | $y=5x-6$ |
![]() | $y=-5x-6$ |
![]() | $y=5x+6$ |
Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.
![]() | $0$ |
![]() | $-2$ |
![]() | $2$ |
![]() | $1$ |
Cho hàm số $y=f\left(x\right)$ xác định trên $\left(a;b\right)$, $x_0\in\left(a;b\right)$. Đạo hàm của hàm số $y=f\left(x\right)$ tại điểm $x_0$ là
![]() | $f'\left(x_0\right)=\lim\limits_{\Delta y\to0}\dfrac{\Delta y}{\Delta x}$ |
![]() | $f'\left(x_0\right)=\lim\limits_{\Delta x\to0}\dfrac{\Delta y}{\Delta x}$ |
![]() | $f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta y}{\Delta x}$ |
![]() | $f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta x}{\Delta y}$ |
Cho hàm số $y=x^3+1$. Gọi $\Delta x$ là số gia của đối số tại $x$ và $\Delta y$ là số gia tương ứng của hàm số, tính $\dfrac{\Delta y}{\Delta x}$.
![]() | $3x^2-3x.\Delta x+\left(\Delta x\right)^3$ |
![]() | $3x^2+3x.\Delta x+\left(\Delta x\right)^2$ |
![]() | $3x^2+3x.\Delta x-\left(\Delta x\right)^2$ |
![]() | $3x^2+3x.\Delta x+\left(\Delta x\right)^3$ |
Tính tỷ số \(\dfrac{\Delta y}{\Delta x}\) của hàm số \(y=x^2-1\) theo \(x\) và \(\Delta x\).
![]() | \(\dfrac{\Delta y}{\Delta x}=0\) |
![]() | \(\dfrac{\Delta y}{\Delta x}=\Delta x+2x\) |
![]() | \(\dfrac{\Delta y}{\Delta x}=2+\Delta x\) |
![]() | \(\dfrac{\Delta y}{\Delta x}=\Delta x\) |
Tính tỷ số \(\dfrac{\Delta y}{\Delta x}\) của hàm số \(y=3x+1\) theo \(x\) và \(\Delta x\).
![]() | \(\dfrac{\Delta y}{\Delta x}=0\) |
![]() | \(\dfrac{\Delta y}{\Delta x}=1\) |
![]() | \(\dfrac{\Delta y}{\Delta x}=2\) |
![]() | \(\dfrac{\Delta y}{\Delta x}=3\) |
Tính số gia của hàm số \(y=\dfrac{1}{x}\) tại điểm \(x\neq0\) bất kì ứng với số gia \(\Delta x\).
![]() | \(\Delta y=\dfrac{\Delta x}{x\left(x+\Delta x\right)}\) |
![]() | \(\Delta y=-\dfrac{\Delta x}{x\left(x+\Delta x\right)}\) |
![]() | \(\Delta y=-\dfrac{\Delta x}{x+\Delta x}\) |
![]() | \(\Delta y=\dfrac{\Delta x}{x+\Delta x}\) |
Tính số gia của hàm số \(y=\dfrac{x^2}{2}\) tại điểm \(x_0=-1\) ứng với số gia \(\Delta x\).
![]() | \(\Delta y=\dfrac{1}{2}\left(\Delta x\right)^2-\Delta x\) |
![]() | \(\Delta y=\dfrac{1}{2}\left[\left(\Delta x\right)^2-\Delta x\right]\) |
![]() | \(\Delta y=\dfrac{1}{2}\left[\left(\Delta x\right)^2+\Delta x\right]\) |
![]() | \(\Delta y=\dfrac{1}{2}\left(\Delta x\right)^2+\Delta x\) |
Tính số gia của hàm số \(y=x^3+x^2+1\) tại điểm \(x_0\) ứng với số gia \(\Delta x=1\).
![]() | \(\Delta y=3x_0^2+5x_0+3\) |
![]() | \(\Delta y=2x_0^3+3x_0^2+5x_0+2\) |
![]() | \(\Delta y=3x_0^2+5x_0+2\) |
![]() | \(\Delta y=3x_0^2-5x_0+2\) |
Tính số gia của hàm số \(y=x^2+2\) tại điểm \(x_0=2\) ứng với số gia \(\Delta x=1\).
![]() | \(\Delta y=13\) |
![]() | \(\Delta y=9\) |
![]() | \(\Delta y=5\) |
![]() | \(\Delta y=2\) |
Tìm hệ số góc \(k\) của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoành độ \(\dfrac{1}{2}\).
![]() | \(k=0\) |
![]() | \(k=1\) |
![]() | \(k=\dfrac{1}{4}\) |
![]() | \(k=-\dfrac{1}{2}\) |
Một chất điểm chuyển động theo phương trình \(S=-2t^3+18t^2+1\), trong đó \(t\) tính bằng giây và \(S\) tính bằng mét. Mất bao lâu kể từ lúc xuất phát để chất điểm đạt vận tốc lớn nhất?
![]() | \(5\) giây |
![]() | \(6\) giây |
![]() | \(3\) giây |
![]() | \(1\) giây |
Giá trị nhỏ nhất của hàm số \(y=x^2+2x+5\) trên nửa khoảng \([-4;+\infty)\) là
![]() | \(13\) |
![]() | \(-17\) |
![]() | \(4\) |
![]() | \(-9\) |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
![]() | \(y=\dfrac{x-1}{x}\) |
![]() | \(y=2x^3\) |
![]() | \(y=x^2+1\) |
![]() | \(y=x^4+5\) |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
![]() | $1$ |
![]() | $3$ |
![]() | $2$ |
![]() | $4$ |
Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng
![]() | $\dfrac{4}{5}$ |
![]() | $\dfrac{4}{3\ln2}$ |
![]() | $\dfrac{4}{2\ln5}$ |
![]() | $2$ |
Đạo hàm của hàm số $y=x^{2023}$ là
![]() | $y'=2023x^{2023}$ |
![]() | $y'=2022x^{2023}$ |
![]() | $y'=2023x^{2022}$ |
![]() | $y'=\dfrac{1}{2023}x^{2022}$ |
Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là
![]() | $y'=\dfrac{1-\ln2x}{x^2}$ |
![]() | $y'=\dfrac{\ln2x}{2x}$ |
![]() | $y'=\dfrac{\ln2x}{x^2}$ |
![]() | $y'=\dfrac{1}{2x}$ |