Cho hàm số $y=f(x)=x^3-5x^2+2$ có đồ thị $(\mathscr{C})$. Có bao nhiêu tiếp tuyến của $(\mathscr{C})$ song song với đường thẳng $y=-7x$?
$3$ | |
$4$ | |
$2$ | |
$1$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-3x^2+x+3$ $(\mathscr{P})$ tại điểm $M(1;1)$.
$y=-5x+6$ | |
$y=5x-6$ | |
$y=-5x-6$ | |
$y=5x+6$ |
Tìm hệ số góc \(k\) của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoành độ \(\dfrac{1}{2}\).
\(k=0\) | |
\(k=1\) | |
\(k=\dfrac{1}{4}\) | |
\(k=-\dfrac{1}{2}\) |
Viết phương trình tiếp tuyến $\Delta$ của đồ thị hàm số $y=\sqrt{x}$, biết tiếp tuyến này vuông góc với đường thẳng $d\colon4x+y-1=0$.
Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).
$3$(A) | |
$25$(A) | |
$10$(A) | |
$2$(A) |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
$y=-\dfrac{1}{3}x+\dfrac{1}{3}$ | |
$y=\dfrac{1}{3}x+\dfrac{11}{3}$ | |
$y=\dfrac{1}{3}x-\dfrac{11}{3}$ | |
$y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(-2;6)$.
$y=-11x-16$ | |
$y=-11x-28$ | |
$y=-11x+28$ | |
$y=-11x+16$ |
Cho hàm số $y=\dfrac{2x+1}{x-1}$ có đồ thị là $(\mathscr{C})$. Viết phương trình tiếp tuyến của $(\mathscr{C})$ biết tiếp tuyến vuông góc với đường thẳng có phương trình $x-3y+2019=0$.
Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.
$0$ | |
$-2$ | |
$2$ | |
$1$ |
Số gia của hàm số $y=f(x)=x^2+2x-3$ ứng với số gia $\Delta x$ của đối số tại $x_0=1$ là
$\Delta y=\Delta^2x-4\Delta x$ | |
$\Delta y=\Delta^2x+2\Delta x$ | |
$\Delta y=4\Delta x$ | |
$\Delta y=\Delta^2x+4\Delta x$ |
Gọi $(d)$ là tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(1;0)$. Tìm hệ số góc của $(d)$.
$-2$ | |
$2$ | |
$1$ | |
$0$ |
Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.
$-3$ | |
$0$ | |
$1$ | |
$2$ |
Tiếp tuyến của đồ thị hàm số $y=x^3-2x^2$ tại điểm $M\left(1;-1\right)$ có hệ số góc bằng
$-1$ | |
$1$ | |
$7$ | |
$5$ |
Cho hàm số $y=f(x)$ có đồ thị $\left(\mathscr{C}\right)$ và đạo hàm $f'(2)=6$. Hệ số góc của tiếp tuyến của $\left(\mathscr{C}\right)$ tại điểm $M\left(2;f\left(2\right)\right)$ bằng
$6$ | |
$3$ | |
$2$ | |
$12$ |
Đường thẳng nào sau đây tiếp xúc với parabol $\left(\mathscr{P}\right)\colon y=2x^2-5x+3$?
$y=x+2$ | |
$y=-x-1$ | |
$y=x+3$ | |
$y=-x+1$ |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-2}{2x+1}\) vuông góc với đường thẳng \(y=-\dfrac{1}{5}x\) là
\(y=5x+3\) và \(y=5x-2\) | |
\(y=5x-8\) và \(y=5x-2\) | |
\(y=5x+8\) và \(y=5x-2\) | |
\(y=5x+8\) và \(y=5x+2\) |
Tiếp tuyến của đồ thị hàm số \(y=x^3-3x+2\) vuông góc với \(d\colon y=-\dfrac 19x+2\) là
\(y=-\dfrac 19x+18,\,y=-\dfrac 19x+5\) | |
\(y=\dfrac 19x+18,\,y=\dfrac 19x-14\) | |
\(y=9x+18,\,y=9x-14\) | |
\(y=9x+18,\,y=9x+5\) |
Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).
\(y=-3x+1\), \(y=-3x-7\) | |
\(y=-3x-1\), \(y=-3x+11\) | |
\(y=-3x-1\) | |
\(y=-3x+11\), \(y=-3x+5\) |
Cho hàm số \(y=x^3-6x^2+9x\) có đồ thị \(\left(\mathscr{C}\right)\). Tiếp tuyến của \(\left(\mathscr{C}\right)\) song song với đường thẳng \(d\colon y=9x\) có phương trình là
\(y=9x+40\) | |
\(y=9x-40\) | |
\(y=9x+32\) | |
\(y=9x-32\) |
Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).
\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) | |
\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) | |
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) | |
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |