Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
$M$ | |
$Q$ | |
$P$ | |
$N$ |
Trong hình vẽ, điểm \(P\) biểu diễn số phức \(z_1\), điểm \(Q\) biểu diễn số phức \(z_2\). Tìm số phức \(z=z_1+z_2\).
\(z=1+3\mathrm{i}\) | |
\(z=-3+\mathrm{i}\) | |
\(z=-1+2\mathrm{i}\) | |
\(z=2+\mathrm{i}\) |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(-1;-\dfrac{2}{3}\right)$ | |
$\left(-1;\dfrac{2}{3}\right)$ | |
$\left(1;-\dfrac{2}{3}\right)$ | |
$\left(1;\dfrac{2}{3}\right)$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.
Phần ảo của số phức $(1+i)z$ bằng
$7$ | |
$-7$ | |
$-1$ | |
$1$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
$P(3;-12)$ | |
$Q(3;12)$ | |
$M(14;-5)$ | |
$N(-3;12)$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
$\left(5;1\right)$ | |
$\left(-1;-5\right)$ | |
$\left(1;5\right)$ | |
$\left(-5;-1\right)$ |
Trên mặt phẳng $Oxy$, cho các điểm như hình bên.
Điểm biểu diễn số phức $z=-3+2i$ là
điểm $N$ | |
điểm $Q$ | |
điểm $M$ | |
điểm $P$ |
Gọi $z,\,w$ là các số phức có điểm biểu diễn lần lượt là $M$ và $N$ trên mặt phẳng $Oxy$ như hình minh họa bên.
Phần ảo của số phức $\dfrac{z}{w}$ là
$\dfrac{14}{17}$ | |
$3$ | |
$-\dfrac{5}{17}$ | |
$-\dfrac{1}{2}$ |
Điểm nào trong hình bên biểu diễn cho số phức $w=4-i$?
Điểm $M$ | |
Điểm $N$ | |
Điểm $P$ | |
Điểm $Q$ |
Trong mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\dfrac{z+4i}{z-4i}$ là một số thực dương.
Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$) | |
Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $2i$, $J$ là điểm biểu diễn $-2i$) | |
Đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$) | |
Trục $Ox$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4$, $J$ là điểm biểu diễn $-4$) |
Tìm tọa độ của điểm biểu diễn số phức $z=\dfrac{3+4i}{1-i}$ trên mặt phẳng tọa độ.
$Q\left(\dfrac{1}{2};-\dfrac{7}{2}\right)$ | |
$N\left(\dfrac{1}{2};\dfrac{7}{2}\right)$ | |
$P\left(-\dfrac{1}{2};\dfrac{7}{2}\right)$ | |
$M\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
Cho hai số phức $z_1=1-2i$ và $z_2=3+4i$. Tìm điểm $M$ biểu diễn số phức $z_1\cdot z_2$ trên mặt phẳng tọa độ.
$M(-2;11)$ | |
$M(11;2)$ | |
$M(11;-2)$ | |
$M(-2;-11)$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn của số phức nào dưới đây?
$z=-2+3i$ | |
$z=3+2i$ | |
$z=2-3i$ | |
$z=3-2i$ |
Trong mặt phẳng $Oxy$, số phức $z=-2+4i$ được biểu diễn bởi điểm nào trong các điểm ở hình vẽ dưới đây?
Điểm $D$ | |
Điểm $B$ | |
Điểm $C$ | |
Điểm $A$ |
Trong mặt phẳng \(Oxy\), cho các điểm \(A,\,B\) như hình vẽ trên. Trung điểm của đoạn thẳng \(AB\) biểu diễn số phức
\(-\dfrac{1}{2}+2i\) | |
\(2-\dfrac{1}{2}i\) | |
\(-1+2i\) | |
\(2-i\) |
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(|z-2+3i|=4\).
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=4\) | |
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=16\) | |
Đường tròn tâm \(I(-2;3)\) và bán kính \(R=4\) | |
Đường tròn tâm \(I(2;-3)\) và bán kính \(R=16\) |
Điểm \(A\) trong hình vẽ trên biểu diễn cho số phức \(z\). Mệnh đề nào sau đây đúng.
Phần thực là \(-3\), phần ảo là \(2\) | |
Phần thực là \(-3\), phần ảo là \(2i\) | |
Phần thực là \(3\), phần ảo là \(-2i\) | |
Phần thực là \(3\), phần ảo là \(2\) |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z=\left(1+2i\right)^2\) là điểm nào dưới đây?
\(P\left(-3;4\right)\) | |
\(Q\left(5;4\right)\) | |
\(N\left(4;-3\right)\) | |
\(M\left(4;5\right)\) |
Cho số phức \(z=1-\mathrm{i}\). Biểu diễn số phức \(z^2\) là điểm
\(N(-2;0)\) | |
\(Q(0;-2)\) | |
\(P(2;0)\) | |
\(M(1;2)\) |