Nguyên hàm $\displaystyle\displaystyle\int\sin x\mathrm{d}x$ là
$-\cos x+C$ | |
$\cos x+C$ | |
$\dfrac{1}{2}\cos2x+C$ | |
$-\cos2x+C$ |
Khẳng định nào sau đây là khẳng định sai?
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) | |
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=-\dfrac{1}{x}+C\) | |
\(\displaystyle\int\dfrac{1}{2\sqrt{x}}\mathrm{\,d}x=\sqrt{x}+C\) | |
\(\displaystyle\int a^x\mathrm{\,d}x=a^x\cdot\ln a+C\) (\(a>0,\,a\neq1\)) |
Cặp số nào sau đây có tính chất "Có một hàm số là nguyên hàm của hàm số còn lại"?
\(\tan x\) và \(\dfrac{1}{\sin^2x^2}\) | |
\(\sin x\) và \(\cos x\) | |
\(\mathrm{e}^x\) và \(\mathrm{e}^{-x}\) | |
\(x^2\) và \(x\) |
Cặp số nào sau đây có tính chất "Có một hàm số là nguyên hàm của hàm số còn lại"?
\(\tan x^2\) và \(\dfrac{1}{\cos^2x^2}\) | |
\(\sin2x\) và \(\sin^2x\) | |
\(\mathrm{e}^x\) và \(\mathrm{e}^{-x}\) | |
\(\sin2x\) và \(\cos^2x\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x-C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+3C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\dfrac{1}{\cos^2 x}\mathrm{\,d}x=\tan x-5+C\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan x+C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) |
Cho hàm số $f(x)=1-\dfrac{1}{\cos^22x}$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\tan2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\cot2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\dfrac{1}{2}\tan2x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\dfrac{1}{2}\tan2x+C$ |
Cho $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cos x+C$. Khẳng định nào dưới đây đúng?
$f(x)=-\sin x$ | |
$f(x)=-\cos x$ | |
$f(x)=\sin x$ | |
$f(x)=\cos x$ |
Khẳng định nào sau đây sai?
$\displaystyle\displaystyle\int\sin x\mathrm{\,d}x=-\cos x+C$ | |
$\displaystyle\displaystyle\int a^x\mathrm{\,d}x=a^x\ln{a}+C,\,\left(a>0,\,a\ne1\right)$ | |
$\displaystyle\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan{x}+C$ | |
$\displaystyle\displaystyle\int\dfrac{1}{x}\mathrm{\,d}x=\ln\left|x\right|+C$ |
Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?
$f(x)=\dfrac{1}{2}x^2-\cos x$ | |
$f(x)=1-\sin x$ | |
$f(x)=1+\sin x$ | |
$f(x)=\dfrac{1}{2}x^2+\sin x$ |
Mệnh đề nào sau đây là sai?
$(\cos x)^{\prime}=-\sin x$ | |
$(\sin x)^{\prime}=-\cos x$ | |
$(\cot x)^{\prime}=-\dfrac{1}{\sin^2x}$ | |
$(\tan x)^{\prime}=\dfrac{1}{\cos^2x}$ |
Cho biết $F(x)$ là một nguyên hàm của hàm số $f(x)$. Biểu thức $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$ bằng
$F(x)$ | |
$F(x)+C$ | |
$F'(x)+C$ | |
$xF(x)+C$ |
Hàm số $y=\cot x$ có đạo hàm là
$y'=-\dfrac{1}{\cos^2x}$ | |
$y'=-\dfrac{1}{\sin^2x}$ | |
$y'=\tan x$ | |
$y'=\dfrac{1}{\sin^2x}$ |
Hàm số $y=\cos x$ có đạo hàm là
$y'=\sin x$ | |
$y'=\dfrac{1}{\sin x}$ | |
$y'=-\cos x$ | |
$y'=-\sin x$ |
Cho hàm số $f(x)=1+\sin x$. Khẳng định nào dưới đây đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x-\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\sin x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=x+\cos x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cos x+C$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
$f\left(x\right)=3x+5\sin x+2$ | |
$f\left(x\right)=3x-5\sin x-5$ | |
$f\left(x\right)=3x-5\sin x+5$ | |
$f\left(x\right)=3x+5\sin x+5$ |
Hàm số $F\left(x\right)=\cos3x$ là nguyên hàm của hàm số
$f\left(x\right)=\dfrac{\sin3x}{3}$ | |
$f\left(x\right)=-3\sin3x$ | |
$f\left(x\right)=3\sin 3x$ | |
$f\left(x\right)=-\sin3x$ |
Tìm nguyên hàm của hàm số $f(x)=\cos3x$.
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\dfrac{1}{3}\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=3\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=-\dfrac{1}{3}\sin3x+C$ |